-
Notifications
You must be signed in to change notification settings - Fork 26
/
ImpParser_J.v
568 lines (514 loc) · 17.9 KB
/
ImpParser_J.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
(** * ImpParser_J: Coqでの字句解析と構文解析 *)
(* * ImpParser: Lexing and Parsing in Coq *)
(* $Date: 2011-02-21 10:21:18 -0500 (Mon, 21 Feb 2011) $ *)
(* The development of the [Imp] language in Imp.v completely ignores
issues of concrete syntax -- how an ascii string that a programmer
might write gets translated into the abstract syntax trees defined
by the datatypes [aexp], [bexp], and [com]. In this file we
illustrate how the rest of the story can be filled in by building
a simple lexical analyzer and parser using Coq's functional
programming facilities.
This development is not intended to be understood in detail: the
explanations are fairly terse and there are no exercises. The
main point is simply to demonstrate that it can be done. You are
invited to look through the code -- most of it is not very
complicated, though the parser relies on some "monadic"
programming idioms that may require a little work to make out --
but most readers will probably want to just skip down to the
Examples section at the very end to get the punchline. *)
(** Imp_J.vでの[Imp]言語の開発は、具象構文の問題を完全に無視しています。
つまり、プログラマが書くアスキー文字列をデータ型[aexp]、[bexp]、[com]
で定義された抽象構文木にどうやって変換するか、という問題です。
このファイルでは、
Coqの関数プログラミング機能によって簡単な字句解析器と構文解析器(パーサ)を構築することで、
この残っている問題を終わらせます。
ここでやることは、細部まで理解する必要はありません。
説明はかなり少なく、練習問題もありません。
一番のポイントは単に、それをやることが可能なことを示すことです。
コードを眺めてみて欲しいところです。ほとんどの部分はそれほど複雑ではありません。
ただパーサはある「モナド的」プログラミング法をしているので、
理解するのにちょっと骨が折れるかもしれません。
しかし、ほとんどの読者は、一番最後の「例」のさわりまで飛ばしたいことでしょう。*)
(* ####################################################### *)
(* * Internals *)
(** * 内部処理 *)
Require Import SfLib_J.
Require Import Imp_J.
Require Import String.
Require Import Ascii.
Open Scope list_scope.
(* ####################################################### *)
(* ** Lexical Analysis *)
(** ** 字句解析 *)
Definition isWhite (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (orb (beq_nat n 32) (* space *)
(beq_nat n 9)) (* tab *)
(orb (beq_nat n 10) (* linefeed *)
(beq_nat n 13)). (* Carriage return. *)
Notation "x '<=?' y" := (ble_nat x y)
(at level 70, no associativity) : nat_scope.
Definition isLowerAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (97 <=? n) (n <=? 122).
Definition isAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (andb (65 <=? n) (n <=? 90))
(andb (97 <=? n) (n <=? 122)).
Definition isDigit (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (48 <=? n) (n <=? 57).
Inductive chartype := white | alpha | digit | other.
Definition classifyChar (c : ascii) : chartype :=
if isWhite c then
white
else if isAlpha c then
alpha
else if isDigit c then
digit
else
other.
Fixpoint list_of_string (s : string) : list ascii :=
match s with
| EmptyString => []
| String c s => c :: (list_of_string s)
end.
Fixpoint string_of_list (xs : list ascii) : string :=
fold_right String EmptyString xs.
Definition token := string.
Fixpoint tokenize_helper (cls : chartype) (acc xs : list ascii)
: list (list ascii) :=
let tk := match acc with [] => [] | _::_ => [rev acc] end in
match xs with
| [] => tk
| (x::xs') =>
match cls, classifyChar x, x with
| _, _, "(" => tk ++ ["("]::(tokenize_helper other [] xs')
| _, _, ")" => tk ++ [")"]::(tokenize_helper other [] xs')
| _, white, _ => tk ++ (tokenize_helper white [] xs')
| alpha,alpha,x => tokenize_helper alpha (x::acc) xs'
| digit,digit,x => tokenize_helper digit (x::acc) xs'
| other,other,x => tokenize_helper other (x::acc) xs'
| _,tp,x => tk ++ (tokenize_helper tp [x] xs')
end
end %char.
Definition tokenize (s : string) : list string :=
map string_of_list (tokenize_helper white [] (list_of_string s)).
Example tokenize_ex1 :
tokenize "abc12==3 223*(3+(a+c))" %string
= ["abc", "12", "==", "3", "223",
"*", "(", "3", "+", "(",
"a", "+", "c", ")", ")"]%string.
Proof. reflexivity. Qed.
(* ####################################################### *)
(* ** Parsing *)
(** ** 構文解析 *)
(* ####################################################### *)
(* *** Options with Errors *)
(** *** Option と Error *)
(* An option with error messages. *)
(* エラーメッセージのためのoption。 *)
Inductive optionE (X:Type) : Type :=
| SomeE : X -> optionE X
| NoneE : string -> optionE X.
Implicit Arguments SomeE [[X]].
Implicit Arguments NoneE [[X]].
(* Some syntactic sugar to make writing nested match-expressions on
optionE more convenient. *)
(* ネストされたoptionEの上のマッチ式をより簡単に書くための構文糖衣。*)
Notation "'DO' ( x , y ) <== e1 ;; e2"
:= (match e1 with
| SomeE (x,y) => e2
| NoneE err => NoneE err
end)
(right associativity, at level 60).
Notation "'DO' ( x , y ) <-- e1 ;; e2 'OR' e3"
:= (match e1 with
| SomeE (x,y) => e2
| NoneE err => e3
end)
(right associativity, at level 60, e2 at next level).
(* ####################################################### *)
(* *** Symbol Table *)
(** *** シンボルテーブル *)
(* Build a mapping from [tokens] to [nats]. A real parser would do
this incrementally as it encountered new symbols, but passing
around the symbol table inside the parsing functions is a bit
inconvenient, so instead we do it as a first pass. *)
(* [tokens]から[nats]への写像を構築する。
実際のパーサは新しいシンボルに遭遇するたびにインクリメンタルにこれをやるのかもしれないが、
パーサ関数の中でシンボルテーブルを渡してまわるのはちょっと不便なので、
ここではその代わりに、第1パスでこれをやることにする。*)
Fixpoint build_symtable (xs : list token) (n : nat) : (token -> nat) :=
match xs with
| [] => (fun s => n)
| x::xs =>
if (forallb isLowerAlpha (list_of_string x))
then (fun s => if string_dec s x then n else (build_symtable xs (S n) s))
else build_symtable xs n
end.
(* ####################################################### *)
(* *** Generic Combinators for Building Parsers *)
(** *** パーサ構築のための一般コンビネータ *)
Open Scope string_scope.
Definition parser (T : Type) :=
list token -> optionE (T * list token).
Fixpoint many_helper {T} (p : parser T) acc steps xs :=
match steps, p xs with
| 0, _ => NoneE "Too many recursive calls"
| _, NoneE _ => SomeE ((rev acc), xs)
| S steps', SomeE (t, xs') => many_helper p (t::acc) steps' xs'
end.
(* A (step-indexed) parser which expects zero or more [p]s *)
(* (stepをインデックスとする)パーサ。0個以上の[p]をとる。*)
Fixpoint many {T} (p : parser T) (steps : nat) : parser (list T) :=
many_helper p [] steps.
(* A parser which expects a given token, followed by p *)
(* pの前のトークンを引数とするパーサ *)
Definition firstExpect {T} (t : token) (p : parser T) : parser T :=
fun xs => match xs with
| x::xs' => if string_dec x t
then p xs'
else NoneE ("expected '" ++ t ++ "'.")
| [] => NoneE ("expected '" ++ t ++ "'.")
end.
(* A parser which expects a particular token *)
(* 特定のトークンを引数とするパーサ *)
Definition expect (t : token) : parser unit :=
firstExpect t (fun xs => SomeE(tt, xs)).
(* ####################################################### *)
(* *** A Recursive-Descent Parser for Imp *)
(** *** Impの再帰下降パーサ *)
(* Identifiers *)
(* 識別子 *)
Definition parseIdentifier (symtable :string->nat) (xs : list token)
: optionE (id * list token) :=
match xs with
| [] => NoneE "Expected identifier"
| x::xs' =>
if forallb isLowerAlpha (list_of_string x) then
SomeE (Id (symtable x), xs')
else
NoneE ("Illegal identifier:'" ++ x ++ "'")
end.
(* Numbers *)
(* 数値 *)
Definition parseNumber (xs : list token) : optionE (nat * list token) :=
match xs with
| [] => NoneE "Expected number"
| x::xs' =>
if forallb isDigit (list_of_string x) then
SomeE (fold_left (fun n d =>
10 * n + (nat_of_ascii d - nat_of_ascii "0"%char))
(list_of_string x)
0,
xs')
else
NoneE "Expected number"
end.
(* Parse arithmetic expressions *)
(* 算術式の構文解析 *)
Fixpoint parsePrimaryExp (steps:nat) symtable (xs : list token)
: optionE (aexp * list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
DO (i, rest) <-- parseIdentifier symtable xs ;;
SomeE (AId i, rest)
OR DO (n, rest) <-- parseNumber xs ;;
SomeE (ANum n, rest)
OR (DO (e, rest) <== firstExpect "(" (parseSumExp steps' symtable) xs;;
DO (u, rest') <== expect ")" rest ;;
SomeE(e,rest'))
end
with parseProductExp (steps:nat) symtable (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
DO (e, rest) <==
parsePrimaryExp steps' symtable xs ;;
DO (es, rest') <==
many (firstExpect "*" (parsePrimaryExp steps' symtable)) steps' rest;;
SomeE (fold_left AMult es e, rest')
end
with parseSumExp (steps:nat) symtable (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
DO (e, rest) <==
parseProductExp steps' symtable xs ;;
DO (es, rest') <==
many (fun xs =>
DO (e,rest') <--
firstExpect "+" (parseProductExp steps' symtable) xs;;
SomeE ( (true, e), rest')
OR DO (e,rest') <==
firstExpect "-" (parseProductExp steps' symtable) xs;;
SomeE ( (false, e), rest'))
steps' rest;;
SomeE (fold_left (fun e0 term =>
match term with
(true, e) => APlus e0 e
| (false, e) => AMinus e0 e
end)
es e,
rest')
end.
Definition parseAExp := parseSumExp.
(* Parsing boolean expressions. *)
(* ブール式の構文解析 *)
Fixpoint parseAtomicExp (steps:nat) (symtable : string->nat) (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
DO (u,rest) <-- expect "true" xs;;
SomeE (BTrue,rest)
OR DO (u,rest) <-- expect "false" xs;;
SomeE (BFalse,rest)
OR DO (e,rest) <-- firstExpect "not" (parseAtomicExp steps' symtable) xs;;
SomeE (BNot e, rest)
OR DO (e,rest) <-- firstExpect "(" (parseConjunctionExp steps' symtable) xs;;
(DO (u,rest') <== expect ")" rest;; SomeE (e, rest'))
OR DO (e, rest) <== parseProductExp steps' symtable xs ;;
(DO (e', rest') <--
firstExpect "==" (parseAExp steps' symtable) rest ;;
SomeE (BEq e e', rest')
OR DO (e', rest') <--
firstExpect "<=" (parseAExp steps' symtable) rest ;;
SomeE (BLe e e', rest')
OR
NoneE "Expected '==' or '<=' after arithmetic expression")
end
with parseConjunctionExp (steps:nat) (symtable : string->nat) (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
DO (e, rest) <==
parseAtomicExp steps' symtable xs ;;
DO (es, rest') <==
many (firstExpect "&&" (parseAtomicExp steps' symtable)) steps' rest;;
SomeE (fold_left BAnd es e, rest')
end.
Definition parseBExp := parseConjunctionExp.
(*
Eval compute in
(parseProductExp 100 (tokenize "x*y*(x*x)*x")).
Eval compute in
(parseDisjunctionExp 100 (tokenize "not((x==x||x*x<=(x*x)*x)&&x==x)")).
*)
(* Parsing commands *)
(* コマンドの構文解析 *)
Fixpoint parseSimpleCommand (steps:nat) (symtable:string->nat) (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
DO (u, rest) <-- expect "SKIP" xs;;
SomeE (SKIP, rest)
OR DO (e,rest) <--
firstExpect "IF" (parseBExp steps' symtable) xs;;
DO (c,rest') <==
firstExpect "THEN" (parseSequencedCommand steps' symtable) rest;;
DO (c',rest'') <==
firstExpect "ELSE" (parseSequencedCommand steps' symtable) rest';;
DO (u,rest''') <==
expect "END" rest'';;
SomeE(IFB e THEN c ELSE c' FI, rest''')
OR DO (e,rest) <--
firstExpect "WHILE" (parseBExp steps' symtable) xs;;
DO (c,rest') <==
firstExpect "DO" (parseSequencedCommand steps' symtable) rest;;
DO (u,rest'') <==
expect "END" rest';;
SomeE(WHILE e DO c END, rest'')
OR DO (i, rest) <==
parseIdentifier symtable xs;;
DO (e, rest') <==
firstExpect ":=" (parseAExp steps' symtable) rest;;
SomeE(i ::= e, rest')
end
with parseSequencedCommand (steps:nat) (symtable:string->nat) (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
DO (c, rest) <==
parseSimpleCommand steps' symtable xs;;
DO (c', rest') <--
firstExpect ";" (parseSequencedCommand steps' symtable) rest;;
SomeE(c ; c', rest')
OR
SomeE(c, rest)
end.
Definition parse (str : string) : optionE (com * list token) :=
let tokens := tokenize str in
parseSequencedCommand 1000 (build_symtable tokens 0) tokens.
(* ####################################################### *)
(* * Examples *)
(** * 例 *)
(*
Eval compute in parse "
IF x == y + 1 + 2 - y * 6 + 3 THEN
x := x * 1;
y := 0
ELSE
SKIP
END ".
====>
SomeE
(IFB BEq (AId (Id 0))
(APlus
(AMinus (APlus (APlus (AId (Id 1)) (ANum 1)) (ANum 2))
(AMult (AId (Id 1)) (ANum 6)))
(ANum 3))
THEN Id 0 ::= AMult (AId (Id 0)) (ANum 1); Id 1 ::= ANum 0
ELSE SKIP FI, [])
*)
(**
Eval compute in parse
[[
"IF x == y + 1 + 2 - y * 6 + 3 THEN
x := x * 1;
y := 0
ELSE
SKIP
END ".
]]
====>
[[
SomeE
(IFB BEq (AId (Id 0))
(APlus
(AMinus (APlus (APlus (AId (Id 1)) (ANum 1)) (ANum 2))
(AMult (AId (Id 1)) (ANum 6)))
(ANum 3))
THEN Id 0 ::= AMult (AId (Id 0)) (ANum 1); Id 1 ::= ANum 0
ELSE SKIP FI, [])
]]
*)
(*
Eval compute in parse "
SKIP;
z:=x*y*(x*x);
WHILE x==x DO
IF z <= z*z && not x == 2 THEN
x := z;
y := z
ELSE
SKIP
END;
SKIP
END;
x:=z ".
====>
SomeE
(SKIP;
Id 0 ::= AMult (AMult (AId (Id 1)) (AId (Id 2)))
(AMult (AId (Id 1)) (AId (Id 1)));
WHILE BEq (AId (Id 1)) (AId (Id 1)) DO
IFB BAnd (BLe (AId (Id 0)) (AMult (AId (Id 0)) (AId (Id 0))))
(BNot (BEq (AId (Id 1)) (ANum 2)))
THEN Id 1 ::= AId (Id 0); Id 2 ::= AId (Id 0)
ELSE SKIP FI;
SKIP
END;
Id 1 ::= AId (Id 0),
[])
*)
(**
Eval compute in parse
[[
"SKIP;
z:=x*y*(x*x);
WHILE x==x DO
IF z <= z*z && not x == 2 THEN
x := z;
y := z
ELSE
SKIP
END;
SKIP
END;
x:=z ".
]]
====>
[[
SomeE
(SKIP;
Id 0 ::= AMult (AMult (AId (Id 1)) (AId (Id 2)))
(AMult (AId (Id 1)) (AId (Id 1)));
WHILE BEq (AId (Id 1)) (AId (Id 1)) DO
IFB BAnd (BLe (AId (Id 0)) (AMult (AId (Id 0)) (AId (Id 0))))
(BNot (BEq (AId (Id 1)) (ANum 2)))
THEN Id 1 ::= AId (Id 0); Id 2 ::= AId (Id 0)
ELSE SKIP FI;
SKIP
END;
Id 1 ::= AId (Id 0),
[])
]]
*)
(*
Eval compute in parse "
SKIP;
z:=x*y*(x*x);
WHILE x==x DO
IF z <= z*z && not x == 2 THEN
x := z;
y := z
ELSE
SKIP
END;
SKIP
END;
x:=z ".
=====>
SomeE
(SKIP;
Id 0 ::= AMult (AMult (AId (Id 1)) (AId (Id 2)))
(AMult (AId (Id 1)) (AId (Id 1)));
WHILE BEq (AId (Id 1)) (AId (Id 1)) DO
IFB BAnd (BLe (AId (Id 0)) (AMult (AId (Id 0)) (AId (Id 0))))
(BNot (BEq (AId (Id 1)) (ANum 2)))
THEN Id 1 ::= AId (Id 0);
Id 2 ::= AId (Id 0)
ELSE SKIP
FI;
SKIP
END;
Id 1 ::= AId (Id 0),
[]).
*)
(**
Eval compute in parse
[[
"SKIP;
z:=x*y*(x*x);
WHILE x==x DO
IF z <= z*z && not x == 2 THEN
x := z;
y := z
ELSE
SKIP
END;
SKIP
END;
x:=z ".
]]
=====>
[[
SomeE
(SKIP;
Id 0 ::= AMult (AMult (AId (Id 1)) (AId (Id 2)))
(AMult (AId (Id 1)) (AId (Id 1)));
WHILE BEq (AId (Id 1)) (AId (Id 1)) DO
IFB BAnd (BLe (AId (Id 0)) (AMult (AId (Id 0)) (AId (Id 0))))
(BNot (BEq (AId (Id 1)) (ANum 2)))
THEN Id 1 ::= AId (Id 0);
Id 2 ::= AId (Id 0)
ELSE SKIP
FI;
SKIP
END;
Id 1 ::= AId (Id 0),
[]).
]]
*)