Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[fix] added support for vlm in offline inference #3548

Merged
merged 5 commits into from
Feb 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions examples/runtime/engine/offline_batch_inference_vlm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
"""
Usage:
python offline_batch_inference_vlm.py --model-path Qwen/Qwen2-VL-7B-Instruct --chat-template=qwen2-vl
"""

import argparse
import dataclasses

from transformers import AutoProcessor

import sglang as sgl
from sglang.srt.openai_api.adapter import v1_chat_generate_request
from sglang.srt.openai_api.protocol import ChatCompletionRequest
from sglang.srt.server_args import ServerArgs


def main(
server_args: ServerArgs,
):
# Create an LLM.
vlm = sgl.Engine(**dataclasses.asdict(server_args))

# prepare prompts.
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What’s in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true",
},
},
],
}
]
chat_request = ChatCompletionRequest(
messages=messages,
model=server_args.model_path,
temperature=0.8,
top_p=0.95,
)
gen_request, _ = v1_chat_generate_request(
[chat_request],
vlm.tokenizer_manager,
)

outputs = vlm.generate(
input_ids=gen_request.input_ids,
image_data=gen_request.image_data,
sampling_params=gen_request.sampling_params,
)

print("===============================")
print(f"Prompt: {messages[0]['content'][0]['text']}")
print(f"Generated text: {outputs['text']}")


# The __main__ condition is necessary here because we use "spawn" to create subprocesses
# Spawn starts a fresh program every time, if there is no __main__, it will run into infinite loop to keep spawning processes from sgl.Engine
if __name__ == "__main__":
parser = argparse.ArgumentParser()
ServerArgs.add_cli_args(parser)
args = parser.parse_args()
server_args = ServerArgs.from_cli_args(args)
main(server_args)
13 changes: 13 additions & 0 deletions python/sglang/srt/entrypoints/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,9 @@ def generate(
sampling_params: Optional[Union[List[Dict], Dict]] = None,
# The token ids for text; one can either specify text or input_ids.
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
# The image input. It can be a file name, a url, or base64 encoded string.
# See also python/sglang/srt/utils.py:load_image.
image_data: Optional[Union[List[str], str]] = None,
return_logprob: Optional[Union[List[bool], bool]] = False,
logprob_start_len: Optional[Union[List[int], int]] = None,
top_logprobs_num: Optional[Union[List[int], int]] = None,
Expand All @@ -126,14 +129,20 @@ def generate(
The arguments of this function is the same as `sglang/srt/managers/io_struct.py::GenerateReqInput`.
Please refer to `GenerateReqInput` for the documentation.
"""
modalities_list = []
if image_data is not None:
modalities_list.append("image")

obj = GenerateReqInput(
text=prompt,
input_ids=input_ids,
sampling_params=sampling_params,
image_data=image_data,
return_logprob=return_logprob,
logprob_start_len=logprob_start_len,
top_logprobs_num=top_logprobs_num,
lora_path=lora_path,
modalities=modalities_list,
custom_logit_processor=custom_logit_processor,
stream=stream,
)
Expand Down Expand Up @@ -162,6 +171,9 @@ async def async_generate(
sampling_params: Optional[Union[List[Dict], Dict]] = None,
# The token ids for text; one can either specify text or input_ids.
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
# The image input. It can be a file name, a url, or base64 encoded string.
# See also python/sglang/srt/utils.py:load_image.
image_data: Optional[Union[List[str], str]] = None,
return_logprob: Optional[Union[List[bool], bool]] = False,
logprob_start_len: Optional[Union[List[int], int]] = None,
top_logprobs_num: Optional[Union[List[int], int]] = None,
Expand All @@ -177,6 +189,7 @@ async def async_generate(
text=prompt,
input_ids=input_ids,
sampling_params=sampling_params,
image_data=image_data,
return_logprob=return_logprob,
logprob_start_len=logprob_start_len,
top_logprobs_num=top_logprobs_num,
Expand Down
Loading