Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bench: Add a benchmark for vLM: MMMU #3562

Merged
merged 2 commits into from
Feb 22, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 22 additions & 0 deletions benchmark/mmmu/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
## Run evaluation

### Evaluate sglang

```
python benchmark/mmmu/bench_sglang.py --model-path Qwen/Qwen2-VL-7B-Instruct --chat-template qwen2-vl
```

It's recommended to reduce the memory usage by appending something ike `--mem-fraction-static 0.6` to the command above.

### Evaluate hf

```
python benchmark/mmmu/bench_hf.py --model-path Qwen/Qwen2-VL-7B-Instruct
```

Some popular model results:

1. Qwen/Qwen2-VL-2B-Instruct: 0.241
2. Qwen/Qwen2-VL-7B-Instruct: 0.255
3. Qwen/Qwen2.5-VL-3B-Instruct: 0.245
4. Qwen/Qwen2.5-VL-7B-Instruct: 0.242
119 changes: 119 additions & 0 deletions benchmark/mmmu/bench_hf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
"""
Bench the huggingface vLM with benchmark MMMU

Usage:
python benchmark/mmmu/bench_hf.py --model-path Qwen/Qwen2-VL-7B-Instruct

The eval output will be logged
"""

import argparse
import random

import torch
from bench_sglang import EvalArgs, prepare_samples
from data_utils import save_json
from eval_utils import eval_result, get_sampling_params, parse_multi_choice_response
from tqdm import tqdm
from transformers import AutoModelForImageTextToText, AutoProcessor


@torch.no_grad()
def eval_mmmu(args):
eval_args = EvalArgs.from_cli_args(args)

model = AutoModelForImageTextToText.from_pretrained(
args.model_path,
torch_dtype="auto",
trust_remote_code=True,
)
model = model.eval().cuda()
model = torch.compile(model)

processor = AutoProcessor.from_pretrained(
args.model_path, torch_dtype="auto", device_map="auto"
)

samples = prepare_samples(eval_args)
out_samples = dict()

sampling_params = get_sampling_params(eval_args)

answer_dict = {}
for sample in tqdm(samples):
prompt = sample["final_input_prompt"]
image = sample["image"]
prefix = prompt.split("<")[0]
suffix = prompt.split(">")[1]
if image is not None:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prefix},
{
"type": "image",
"image": image,
},
{"type": "text", "text": suffix},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)

inputs = processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
).to(model.device)

generated_ids = model.generate(**inputs, **sampling_params)

response = processor.decode(
generated_ids[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[len(text) :]
else: # multiple images actually
if sample["question_type"] == "multiple-choice":
all_choices = sample["all_choices"]
response = random.choice(all_choices)

else:
response = "INVALID GENERATION FOR MULTIPLE IMAGE INPUTS"

if sample["question_type"] == "multiple-choice":
pred_ans = parse_multi_choice_response(
response, sample["all_choices"], sample["index2ans"]
)
else: # open question
pred_ans = response
out_samples[sample["id"]] = pred_ans

torch.cuda.empty_cache()
# set ground truth answer
answer_dict[sample["id"]] = {
"question_type": sample["question_type"],
"ground_truth": sample["answer"],
}

args.output_path = f"{args.model_path}_val_hf.json"
save_json(args.output_path, out_samples)
eval_result(output_path=args.output_path, answer_dict=answer_dict)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-path",
type=str,
help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
required=True,
)
EvalArgs.add_cli_args(parser)
args = parser.parse_args()

eval_mmmu(args)
101 changes: 101 additions & 0 deletions benchmark/mmmu/bench_sglang.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
"""
Bench the sglang-hosted vLM with benchmark MMMU

Usage:
python benchmark/mmmu/bench_sglang.py --model-path Qwen/Qwen2-VL-7B-Instruct --chat-template qwen2-vl

The eval output will be logged
"""

import argparse
import dataclasses
import random
import re
from io import BytesIO

from data_utils import save_json
from eval_utils import (
EvalArgs,
eval_result,
get_sampling_params,
parse_multi_choice_response,
prepare_samples,
)
from tqdm import tqdm

from sglang import Engine
from sglang.srt.conversation import chat_templates
from sglang.srt.server_args import ServerArgs


def eval_mmmu(args):
server_args = ServerArgs.from_cli_args(args)
eval_args = EvalArgs.from_cli_args(args)

if server_args.chat_template is None:
raise ValueError("Chat template must be provided for this benchmark")

samples = prepare_samples(eval_args)

backend = Engine(**dataclasses.asdict(server_args))

out_samples = dict()

sampling_params = get_sampling_params(eval_args)

conv = chat_templates[server_args.chat_template].copy()
image_token = conv.image_token
answer_dict = {}
for sample in tqdm(samples):
prompt = sample["final_input_prompt"]
image = sample["image"]
bytes_io = BytesIO()
image.save(bytes_io, format="PNG")
png_bytes = bytes_io.getvalue()

prompt = re.sub(r"<[^>]*>", image_token, prompt)

if image is not None:
gen_out = backend.generate(
prompt=prompt, image_data=[png_bytes], sampling_params=sampling_params
)["text"]

response = gen_out
else: # multiple images actually
if sample["question_type"] == "multiple-choice":
all_choices = sample["all_choices"]
response = random.choice(all_choices)

else:
response = "INVALID GENERATION FOR MULTIPLE IMAGE INPUTS"

if sample["question_type"] == "multiple-choice":
pred_ans = parse_multi_choice_response(
response, sample["all_choices"], sample["index2ans"]
)
else: # open question
pred_ans = response
out_samples[sample["id"]] = pred_ans

# set ground truth answer
answer_dict[sample["id"]] = {
"question_type": sample["question_type"],
"ground_truth": (
sample["correct_choice"]
if "correct_choice" in samples
else sample["answer"]
),
}

args.output_path = f"{args.model_path}_val_sglang.json"
save_json(args.output_path, out_samples)
eval_result(output_path=args.output_path, answer_dict=answer_dict)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
ServerArgs.add_cli_args(parser)
EvalArgs.add_cli_args(parser)
args = parser.parse_args()

eval_mmmu(args)
Loading
Loading