Skip to content
/ SUPIR Public
forked from Fanghua-Yu/SUPIR

SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild

License

Notifications You must be signed in to change notification settings

shanginn/SUPIR

 
 

Repository files navigation

Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild

[Paper]   [Project Page]   [Replicate Demo]
Fanghua, Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, Chao Dong
Shenzhen Institute of Advanced Technology; Shanghai AI Laboratory; University of Sydney; The Hong Kong Polytechnic University; ARC Lab, Tencent PCG; The Chinese University of Hong Kong


🔧 Dependencies and Installation

  1. Clone repo

    git clone https://github.com/Fanghua-Yu/SUPIR.git
    cd SUPIR
  2. Install dependent packages

    conda create -n SUPIR python=3.8 -y
    conda activate SUPIR
    pip install --upgrade pip
    pip install -r requirements.txt
  3. Download Checkpoints

For users who can connect to huggingface, please setting LLAVA_CLIP_PATH, SDXL_CLIP1_PATH, SDXL_CLIP2_CKPT_PTH in CKPT_PTH.py as None. These CLIPs will be downloaded automatically.

Dependent Models

Models we provided:

  • SUPIR-v0Q: Baidu Netdisk, Google Drive

    Default training settings with paper. High generalization and high image quality in most cases.

  • SUPIR-v0F: Baidu Netdisk, Google Drive

    Training with light degradation settings. Stage1 encoder of SUPIR-v0F remains more details when facing light degradations.

  1. Edit Custom Path for Checkpoints
    * [CKPT_PTH.py] --> LLAVA_CLIP_PATH, LLAVA_MODEL_PATH, SDXL_CLIP1_PATH, SDXL_CLIP2_CACHE_DIR 
    * [options/SUPIR_v0.yaml] --> SDXL_CKPT, SUPIR_CKPT_Q, SUPIR_CKPT_F
    

⚡ Quick Inference

Val Dataset

RealPhoto60: Baidu Netdisk, Google Drive

Usage of SUPIR

Usage: 
-- python test.py [options] 
-- python gradio_demo.py [interactive options]

--img_dir                Input folder.
--save_dir               Output folder.
--upscale                Upsampling ratio of given inputs. Default: 1
--SUPIR_sign             Model selection. Default: 'Q'; Options: ['F', 'Q']
--seed                   Random seed. Default: 1234
--min_size               Minimum resolution of output images. Default: 1024
--edm_steps              Numb of steps for EDM Sampling Scheduler. Default: 50
--s_stage1               Control Strength of Stage1. Default: -1 (negative means invalid)
--s_churn                Original hy-param of EDM. Default: 5
--s_noise                Original hy-param of EDM. Default: 1.003
--s_cfg                  Classifier-free guidance scale for prompts. Default: 7.5
--s_stage2               Control Strength of Stage2. Default: 1.0
--num_samples            Number of samples for each input. Default: 1
--a_prompt               Additive positive prompt for all inputs. 
    Default: 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, 
    hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme
     meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.'
--n_prompt               Fixed negative prompt for all inputs. 
    Default: 'painting, oil painting, illustration, drawing, art, sketch, oil painting, 
    cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality, 
    low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth'
--color_fix_type         Color Fixing Type. Default: 'Wavelet'; Options: ['None', 'AdaIn', 'Wavelet']
--linear_CFG             Linearly (with sigma) increase CFG from 'spt_linear_CFG' to s_cfg. Default: False
--linear_s_stage2        Linearly (with sigma) increase s_stage2 from 'spt_linear_s_stage2' to s_stage2. Default: False
--spt_linear_CFG         Start point of linearly increasing CFG. Default: 1.0
--spt_linear_s_stage2    Start point of linearly increasing s_stage2. Default: 0.0
--ae_dtype               Inference data type of AutoEncoder. Default: 'bf16'; Options: ['fp32', 'bf16']
--diff_dtype             Inference data type of Diffusion. Default: 'fp16'; Options: ['fp32', 'fp16', 'bf16']

Python Script

# Seek for best quality for most cases
CUDA_VISIBLE_DEVICES=0,1 python test.py --img_dir '/opt/data/private/LV_Dataset/DiffGLV-Test-All/RealPhoto60/LQ' --save_dir ./results-Q --SUPIR_sign Q --upscale 2
# for light degradation and high fidelity
CUDA_VISIBLE_DEVICES=0,1 python test.py --img_dir '/opt/data/private/LV_Dataset/DiffGLV-Test-All/RealPhoto60/LQ' --save_dir ./results-F --SUPIR_sign F --upscale 2 --s_cfg 4.0 --linear_CFG

Gradio Demo

CUDA_VISIBLE_DEVICES=0,1 python gradio_demo.py --ip 0.0.0.0 --port 6688 --use_image_slider --log_history

# Juggernaut_RunDiffusionPhoto2_Lightning_4Steps and DPM++ M2 SDE Karras for fast sampling
CUDA_VISIBLE_DEVICES=0,1 python gradio_demo.py --ip 0.0.0.0 --port 6688 --use_image_slider --log_history --opt options/SUPIR_v0_Juggernautv9_lightning.yaml

# less VRAM & slower (12G for Diffusion, 16G for LLaVA)
CUDA_VISIBLE_DEVICES=0,1 python gradio_demo.py --ip 0.0.0.0 --port 6688 --use_image_slider --log_history --loading_half_params --use_tile_vae --load_8bit_llava

Online Demo (Coming Soon)


BibTeX

@misc{yu2024scaling,
  title={Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild}, 
  author={Fanghua Yu and Jinjin Gu and Zheyuan Li and Jinfan Hu and Xiangtao Kong and Xintao Wang and Jingwen He and Yu Qiao and Chao Dong},
  year={2024},
  eprint={2401.13627},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

📧 Contact

If you have any question, please email [email protected].

Misc

Replicate demo is based on https://github.com/chenxwh/SUPIR

About

SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.7%
  • JavaScript 1.2%
  • Other 1.1%