Skip to content

A python library with foundational NLP Algorithms implemented from scratch using PyTorch

License

Notifications You must be signed in to change notification settings

shanmukh05/scratch_nlp

Repository files navigation

Logo

Scratch NLP 🧠

Library with foundational NLP Algorithms implemented from scratch using PyTorch.

Table of Contents 📋

Documentation 📝

Documentation

Installation ⬇️

Install using pip

   pip install ScratchNLP

Install Manually for development

Clone the repo

  gh repo clone shanmukh05/scratch_nlp

Install dependencies

  pip install -r requirements.txt

Features 🛠️

  • Algorithms

    • Bag of Words
    • Ngram
    • TF-IDF
    • Hidden Markov Model
    • Word2Vec
    • GloVe
    • RNN (Many to One)
    • LSTM (One to Many)
    • GRU (Many to Many Synced)
    • Seq2Seq + Attention (Many to Many)
    • Transformer
    • BERT
    • GPT-2
  • Tokenization

    • BypePair Encoding
    • WordPiece Tokenizer
  • Metrics

    • BLEU
    • ROUGE (-N, -L, -S)
    • Perplexity
    • METEOR
    • CIDER
  • Datasets

    • IMDB Reviews Dataset
    • Flickr Dataset
    • NLTK POS Datasets (treebank, brown, conll2000)
    • SQuAD QA Dataset
    • Genius Lyrics Dataset
    • LAMBADA Dataset
    • Wiki en dataset
    • English to Telugu Translation Dataset
  • Tasks

    • Sentiment Classification
    • POS Tagging
    • Image Captioning
    • Machine Translation
    • Question Answering
    • Text Generation

Implementation Details

Algorithm Task Tokenization Output Dataset
BOW Text Representation Preprocessed words
  • Text Label, Vector npy files
  • Top K Vocab Frequency Histogram png
  • Vocab frequency csv
  • Wordcloud png
IMDB Reviews
Ngram Text Representation Preprocessed Words
  • Text Label, Vector npy files
  • Top K Vocab Frequency Histogram png
  • Top K ngrams Piechart ong
  • Vocab frequency csv
  • Wordcloud png
IMDB Reviews
TF-IDF Text Representation Preprocessed words
  • Text Label, Vector npy files
  • TF PCA Pairplot png
  • TF-IDF PCA Pairplot png
  • IDF csv
IMDB Reviews
HMM POS Tagging Preprocessed words
  • Data Analysis png (sent len, POS tags count)
  • Emission Matrix TSNE html
  • Emission matrix csv
  • Test Predictions conf matrix, clf report png
  • Transition Matrix csv, png
NLTK Treebank
Word2Vec Text Representation Preprocessed words
  • Best Model pt
  • Training History json
  • Word Embeddings TSNE html
IMDB Reviews
GloVe Text Representation Preprocessed words
  • Best Model pt
  • Training History json
  • Word Embeddings TSNE html
  • Top K Cooccurence Matrix png
IMDB Reviews
RNN Sentiment Classification Preprocessed words
  • Best Model pt
  • Training History json
  • Word Embeddings TSNE html
  • Confusion Matrix png
  • Training History png
IMDB Reviews
LSTM Image Captioning Preprocessed words
  • Best Model pt
  • Training History json
  • Word Embeddings TSNE html
  • Training History png
Flickr 8k
GRU POS Tagging Preprocessed words
  • Best Model pt
  • Training History json
  • Word Embeddings TSNE html
  • Confusion Matrix png
  • Test predictions csv
  • Training History png
NLTK Treebank, Broown, Conll2000
Seq2Seq + Attention Machine Translation Tokenization
  • Best Model pt
  • Training History json
  • Source, Target Word Embeddings TSNE html
  • Test predictions csv
  • Training History png
English to Telugu Translation
Transformer Lyrics Generation BytePairEncoding
  • Best Model pt
  • Training History json
  • Token Embeddings TSNE html
  • Test predictions csv
  • Training History png
Genius Lyrics
BERT NSP Pretraining, QA Finetuning WordPiece
  • Best Model pt (pretrain, finetune)
  • Training History json (pretrain, finetune)
  • Token Embeddings TSNE html
  • Finetune Test predictions csv
  • Training History png (pretrain, finetune)
Wiki en, SQuAD v1
GPT-2 Sentence Completition BytePairEncoding
  • Best Model pt
  • Training History json
  • Token Embeddings TSNE html
  • Test predictions csv
  • Training History png
LAMBADA

Examples 🌟

Run Train and Inference directly through import

import yaml
from scratch_nlp.src.core.gpt import gpt

with open(config_path, "r") as stream:
  config_dict = yaml.safe_load(stream)

gpt = gpt.GPT(config_dict)
gpt.run()

Run through CLI

  cd src
  python main.py --config_path '<config_path>' --algo '<algo name>' --log_folder '<output folder>'

Contributing 🤝

Contributions are always welcome!

See CONTRIBUTING.md for ways to get started.

Acknowledgements 💡

I have referred to so many online resources to create this project. I'm adding all the resources to RESOURCES.md. Thanks to all who has created those blogs/code/datasets 😊.

Thanks to CS224N course which gave me motivation to start this project

About Me 👤

I am Shanmukha Sainath, working as AI Engineer at KLA Corporation. I have done my Bachelors from Department of Electronics and Electrical Communication Engineering department with Minor in Computer Science Engineering and Micro in Artificial Intelligence and Applications from IIT Kharagpur.

Connect with me

@shanmukh05

Lessons Learned 📌

Most of the things present in this project are pretty new to me. I'm listing down my major learnings when creating this project

  • NLP Algorithms
  • Research paper Implementation
  • Designing Project structure
  • Documentation
  • GitHub pages
  • PIP packaging

License ⚖️

MIT License

Feedback 📣

If you have any feedback, please reach out to me at [email protected]