Skip to content

Commit

Permalink
minor bugfixes
Browse files Browse the repository at this point in the history
  • Loading branch information
sharmaeklavya2 committed May 17, 2023
1 parent e1344bc commit 1b431f2
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 8 deletions.
2 changes: 1 addition & 1 deletion nodes/abstract-algebra/groups/group.html
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ <h2 class="no-deps"> Dependencies:
\[ g^k = \begin{cases}
g*g*\ldots*g \; (k \textrm{ times}) &amp; \textrm{if } k &gt; 0
\\ e &amp; \textrm{if } k = 0
\\ g^{-1}*g^{-1}*\ldots*g^{-1} \; (k \textrm{ times}) &amp; \textrm{if } k &lt; 0
\\ g^{-1}*g^{-1}*\ldots*g^{-1} \; (-k \textrm{ times}) &amp; \textrm{if } k &lt; 0
\end{cases} \]</p>
<p>$\operatorname{order}(g)$ is the smallest positive integer $k$ such that $g^k = e$.
If such a $k$ does not exist, $\operatorname{order}(g) = \infty$.</p>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -54,15 +54,23 @@ <h2> Dependencies:
</ol>

<div class="horizontal-rule"></div>
<p>Let $A$ be a real matrix. Let $A$ have a real eigenvalue $\lambda$ and a corresponding complex eigenvector $u$.
<p><span class="invisible">
$\newcommand{\ubar}{\overline{u}}$
</span>
Let $A$ be a real matrix. Let $A$ have a real eigenvalue $\lambda$ and a corresponding complex eigenvector $u$.
Then a real eigenvector of $A$ exists corresponding to the eigenvalue $\lambda$.</p>
<h2>Proof</h2>
<p>\[ Au = \lambda u
\implies \overline{A}\,\overline{u} = \overline{\lambda}\,\overline{u}
\implies A\overline{u} = \lambda\overline{u}
\implies A(u + \overline{u}) = \lambda(u + \overline{u}) \]</p>
<p>Therefore, $v = u + \overline{u}$ is an eigenvector of $A$ corresponding to $\lambda$.
Also, $v = u + \overline{u} = 2\operatorname{Re}(u)$ is real.</p>
<p>\begin{align}
&amp; Au = \lambda u
\implies \overline{A}\,\ubar = \overline{\lambda}\,\ubar
\implies A\ubar = \lambda\ubar
\\ &amp;\implies A(u + \ubar) = \lambda(u + \ubar)
\textrm{ and } A(i(u - \ubar)) = \lambda(i(u - \ubar))
\end{align}</p>
<p>$u + \ubar = 2\operatorname{Re}(u)$ and $i(u - \ubar) = -2\operatorname{Im}(u)$ are real.
At least one of them must be non-zero, since $u + \ubar = u - \ubar = 0 \implies u = 0$,
which contradicts the fact that $u$ is an eigenvector of $A$.
Hence, one of $u + \ubar$ and $i(u - \ubar)$ is a real eigenvector of $A$ corresponding to $\lambda$.</p>

<div class="horizontal-rule"></div>
<h2> Dependency for: </h2>
Expand Down

0 comments on commit 1b431f2

Please sign in to comment.