Skip to content

sherlock258/DeepTrans-HSU

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hyperspectral Unmixing using Transformer Network

Preetam Ghosh, Swalpa Kumar Roy, Bikram Koirala, Behnood Rasti, and Paul Scheunders

🔥New‼️ Code is now available here.


The repository contains the PyTorch implementations for Hyperspectral Unmixing using Transformer Network.


Dataset

  • Simulated Dataset of 80$\times$80 pixels (see Fig. \ref{Image and Endmembers} (a)) is generated by the linear combination of three endmembers (i.e., Iron (Fe$_2$O$_3$), Silica (SiO$_2$), and Calcium (CaO)) (see Fig. \ref{Image and Endmembers}(b)). Each hyperspectral pixel contains reflection values for 200 different bands covering the wavelength range [1000-2500] nm. This image contains 16 squares of 20 $\times$ 20 pixels with different ternary mixtures (see the first column of Fig. \ref{fig:Sim_Abun})}

If you use the code in your research, we would appreciate a citation to the original paper:

@article{ghosh2019hyperspectral,
    	title={Hyperspectral Unmixing using Transformer Network},
	author={Ghosh, Preetam and Roy, Swalpa Kumar and Koirala, Bikram and Rasti, Behnood and Scheunders, Paul},
	journal={IEEE Transaction on Geoscience and Remote Sensing},
	volume={60},
	no.={1},
	pp.={01-16},
	year={2022}
	}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.0%
  • Python 3.0%