-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_run.py
447 lines (412 loc) · 22.7 KB
/
rec_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import ujson as json
import pickle as pkl
import numpy as np
import logging
import os
import argparse
import random
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
import rec_model
from rec_preprocess import run_prepare
from rec_util import new_train_epoch, new_valid_epoch, load_pkl, AMDataset, my_fn
from pytorch_transformers import WarmupCosineSchedule
from apex import amp
from apex.parallel import DistributedDataParallel
# try:
# from apex import amp
#
# _has_apex = True
# except ImportError:
# _has_apex = False
# def is_apex_available():
# return _has_apex
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
def parse_args():
"""
Parses command line arguments.
"""
parser = argparse.ArgumentParser('Rec')
parser.add_argument('--prepare', action='store_true',
help='create the directories, prepare the vocabulary and embeddings')
parser.add_argument('--train', action='store_true',
help='train and valid the model')
parser.add_argument('--test', action='store_true',
help='evaluate the model on test set')
parser.add_argument('--gpu', type=int, default=0,
help='specify gpu device')
parser.add_argument('--is_distributed', type=bool, default=False,
help='distributed training')
parser.add_argument('--seed', type=int, default=23333,
help='random seed (default: 23333)')
train_settings = parser.add_argument_group('train settings')
train_settings.add_argument('--disable_cuda', action='store_true',
help='Disable CUDA')
train_settings.add_argument('--lr', type=float, default=0.0001,
help='learning rate')
train_settings.add_argument('--clip', type=float, default=0.35,
help='gradient clip, -1 means no clip (default: 0.35)')
train_settings.add_argument('--weight_decay', type=float, default=0.0003,
help='weight decay')
train_settings.add_argument('--emb_dropout', type=float, default=0.5,
help='dropout keep rate')
train_settings.add_argument('--layer_dropout', type=float, default=0.5,
help='dropout keep rate')
train_settings.add_argument('--batch_train', type=int, default=32,
help='train batch size')
train_settings.add_argument('--batch_eval', type=int, default=64,
help='dev batch size')
train_settings.add_argument('--epochs', type=int, default=10,
help='train epochs')
train_settings.add_argument('--optim', default='AdamW',
help='optimizer type')
train_settings.add_argument('--warmup', type=float, default=0.5)
train_settings.add_argument('--patience', type=int, default=2,
help='num of epochs for train patients')
train_settings.add_argument('--loss_batch', type=int, default=1000,
help='period to save batch loss')
train_settings.add_argument('--num_threads', type=int, default=8,
help='Number of threads in input pipeline')
train_settings.add_argument('--local_rank', type=int, default=-1,
help='train batch size')
model_settings = parser.add_argument_group('model settings')
model_settings.add_argument('--P', type=int, default=4,
help='length of feature period')
model_settings.add_argument('--T', type=int, default=36,
help='length of the year sequence')
model_settings.add_argument('--NU', type=int, default=26889,
help='num of users')
model_settings.add_argument('--NI', type=int, default=14020,
help='num of items')
model_settings.add_argument('--NF', type=int, default=128,
help='num of factors')
model_settings.add_argument('--n_hidden', type=int, default=128,
help='size of LSTM hidden units')
model_settings.add_argument('--n_layer', type=int, default=2,
help='num of layers')
model_settings.add_argument('--is_atten', type=bool, default=False,
help='whether to use self attention')
model_settings.add_argument('--n_block', type=int, default=4,
help='attention block size (default: 2)')
model_settings.add_argument('--n_head', type=int, default=4,
help='attention head size (default: 2)')
model_settings.add_argument('--is_pos', type=bool, default=False,
help='whether to use position embedding')
model_settings.add_argument('--is_sinusoid', type=bool, default=True,
help='whether to use sinusoid position embedding')
model_settings.add_argument('--n_kernel', type=int, default=3,
help='kernel size (default: 3)')
model_settings.add_argument('--n_kernels', type=int, default=[2, 3, 4],
help='kernels size (default: 2, 3, 4)')
model_settings.add_argument('--n_level', type=int, default=6,
help='# of levels (default: 10)')
model_settings.add_argument('--n_filter', type=int, default=50,
help='number of hidden units per layer (default: 256)')
model_settings.add_argument('--n_class', type=int, default=2,
help='class size (default: 2)')
model_settings.add_argument('--kmax_pooling', type=int, default=2,
help='top-K max pooling')
model_settings.add_argument('--dynamic', action='store_true',
help='if use dynamic embedding')
model_settings.add_argument('--period', action='store_true',
help='if use period embedding')
path_settings = parser.add_argument_group('path settings')
path_settings.add_argument('--task', default='AM_Office',
help='the task name')
path_settings.add_argument('--model', default='Dynamic_COTEMP',
help='the model name')
path_settings.add_argument('--user_record_file', default='user_record.json',
help='the record file name')
path_settings.add_argument('--item_record_file', default='item_record.json',
help='the record file name')
path_settings.add_argument('--train_file', default='train.csv',
help='the train file name')
path_settings.add_argument('--valid_file', default='dev.csv',
help='the valid file name')
path_settings.add_argument('--test_file', default='test.csv',
help='the test file name')
path_settings.add_argument('--raw_dir', default='data/raw_data/',
help='the dir to store raw data')
path_settings.add_argument('--processed_dir', default='data/processed_data/',
help='the dir to store prepared data')
path_settings.add_argument('--outputs_dir', default='outputs/',
help='the dir for outputs')
path_settings.add_argument('--model_dir', default='models/',
help='the dir to store models')
path_settings.add_argument('--result_dir', default='results/',
help='the dir to store the results')
path_settings.add_argument('--pics_dir', default='pics/',
help='the dir to store the pictures')
path_settings.add_argument('--summary_dir', default='summary/',
help='the dir to write tensorboard summary')
return parser.parse_args()
def func_train(args, file_paths, gpu, ngpus_per_node):
torch.cuda.set_device(gpu)
logger = logging.getLogger('Rec')
if args.local_rank in [-1, 0]:
logger.info('Loading record file...')
user_record_file = load_pkl(file_paths.user_record_file)
item_record_file = load_pkl(file_paths.item_record_file)
user_length_file = load_pkl(file_paths.user_length_file)
item_length_file = load_pkl(file_paths.item_length_file)
train_set = AMDataset(file_paths.train_file, user_record_file, item_record_file, user_length_file, item_length_file,
logger, 'train')
valid_set = AMDataset(file_paths.valid_file, user_record_file, item_record_file, user_length_file, item_length_file,
logger, 'valid')
args.batch_train = int(args.batch_train / ngpus_per_node)
train_sampler = DistributedSampler(train_set)
train_loader = DataLoader(train_set, batch_size=args.batch_train, shuffle=(train_sampler is None), num_workers=4,
collate_fn=my_fn, sampler=train_sampler)
valid_loader = DataLoader(valid_set, batch_size=args.batch_train, shuffle=False, num_workers=4, collate_fn=my_fn)
train_num = len(train_set.labels)
valid_num = len(valid_set.labels)
user_num = len(user_record_file)
args.NU = user_num
item_num = len(item_record_file)
args.NI = item_num
if args.local_rank in [-1, 0]:
logger.info('Num of train data {} valid data {}'.format(train_num, valid_num))
logger.info('Num of users {} items {}'.format(user_num, item_num))
logger.info('Initialize the model...')
if args.dynamic:
UEM = np.random.normal(0., 0.01, (args.T * args.NU + 1, args.NF))
IEM = np.random.normal(0., 0.01, (args.T * args.NI + 1, args.NF))
elif args.period:
UEM = np.random.normal(0., 0.01, (args.P * args.NU + 1, args.NF))
IEM = np.random.normal(0., 0.01, (args.P * args.NI + 1, args.NF))
else:
UEM = np.random.normal(0., 0.01, (args.NU + 1, args.NF))
IEM = np.random.normal(0., 0.01, (args.NI + 1, args.NF))
UEM[0] = 0.
IEM[0] = 0.
dropout = {'emb': args.emb_dropout, 'layer': args.layer_dropout}
model = getattr(rec_model, args.model)(UEM, IEM, args.state, args.T, args.P, args.NU, args.NI, args.NF,
args.n_class, args.n_hidden,
args.n_layer, dropout, logger).to(args.device)
# if args.is_distributed:
# model = torch.nn.parallel.DistributedDataParallel(
# model, device_ids=[args.local_rank], output_device=args.local_rank,
# this should be removed if we update BatchNorm stats
# broadcast_buffers=False)
# model = torch.nn.DataParallel(model)
optimizer = getattr(optim, args.optim)(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
model = DistributedDataParallel(model)
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', 0.5, patience=args.patience, verbose=True)
scheduler = WarmupCosineSchedule(optimizer, args.warmup, (train_num // args.batch_train + 1) * args.epochs)
# max_acc, max_p, max_r, max_f, max_sum, max_epoch = 0, 0, 0, 0, 0, 0
# FALSE = {}
# ROC = {}
# PRC = {}
min_loss, min_epoch = 1e10, 0
for ep in range(1, args.epochs + 1):
if args.local_rank in [-1, 0]:
logger.info('Training the model for epoch {}'.format(ep))
# train_loss = train_one_epoch(model, optimizer, train_num, train_file, user_record_file, item_record_file,
# args, logger)
train_loss = new_train_epoch(model, optimizer, train_loader, args, logger, scheduler)
if args.local_rank in [-1, 0]:
logger.info('Epoch {} MSE {}'.format(ep, train_loss))
# scheduler.step()
if args.local_rank in [-1, 0]:
logger.info('Evaluating the model for epoch {}'.format(ep))
# eval_metrics, fpr, tpr, precision, recall = valid_batch(model, valid_num, args.batch_eval, valid_file,
# user_record_file, item_record_file, args.device,
# 'valid', logger)
# valid_loss = valid_batch(model, valid_num, args.batch_eval, valid_file, user_record_file, item_record_file,
# args.device)
valid_loss = new_valid_epoch(model, valid_loader, args)
if args.local_rank in [-1, 0]:
logger.info('Valid MSE - {}'.format(valid_loss))
# logger.info('Valid Loss - {}'.format(eval_metrics['loss']))
# logger.info('Valid Acc - {}'.format(eval_metrics['acc']))
# logger.info('Valid Precision - {}'.format(eval_metrics['precision']))
# logger.info('Valid Recall - {}'.format(eval_metrics['recall']))
# logger.info('Valid F1 - {}'.format(eval_metrics['f1']))
# logger.info('Valid AUCROC - {}'.format(eval_metrics['auc_roc']))
# logger.info('Valid AUCPRC - {}'.format(eval_metrics['auc_prc']))
# max_acc = max((eval_metrics['acc'], max_acc))
# max_p = max(eval_metrics['precision'], max_p)
# max_r = max(eval_metrics['recall'], max_r)
# max_f = max(eval_metrics['f1'], max_f)
# valid_sum = eval_metrics['auc_roc'] + eval_metrics['auc_prc']
# if valid_sum > max_sum:
# max_sum = valid_sum
# max_epoch = ep
# FALSE = {'FP': eval_metrics['fp'], 'FN': eval_metrics['fn']}
# ROC = {'FPR': fpr, 'TPR': tpr}
# PRC = {'PRECISION': precision, 'RECALL': recall}
if valid_loss < min_loss:
min_loss = valid_loss
min_epoch = ep
torch.save(model.state_dict(), os.path.join(args.model_dir, 'model.bin'))
# scheduler.step(metrics=eval_metrics['f1'])
# scheduler.step(valid_loss)
# logger.info('Max Acc - {}'.format(max_acc))
# logger.info('Max Precision - {}'.format(max_p))
# logger.info('Max Recall - {}'.format(max_r))
# logger.info('Max F1 - {}'.format(max_f))
# logger.info('Max Epoch - {}'.format(max_epoch))
# logger.info('Max Sum - {}'.format(max_sum))
if args.local_rank in [-1, 0]:
logger.info('Min MSE - {}'.format(min_loss))
logger.info('Min Epoch - {}'.format(min_epoch))
# with open(os.path.join(args.result_dir, 'FALSE_valid.json'), 'w') as f:
# f.write(json.dumps(FALSE) + '\n')
# f.close()
# with open(os.path.join(args.result_dir, 'ROC_valid.json'), 'w') as f:
# f.write(json.dumps(ROC) + '\n')
# f.close()
# with open(os.path.join(args.result_dir, 'PRC_valid.json'), 'w') as f:
# f.write(json.dumps(PRC) + '\n')
# f.close()
def func_test(args, file_paths, gpu, ngpus_per_node):
torch.cuda.set_device(gpu)
logger = logging.getLogger('Rec')
logger.info('Loading record file...')
user_record_file = load_pkl(file_paths.user_record_file)
item_record_file = load_pkl(file_paths.item_record_file)
user_length_file = load_pkl(file_paths.user_length_file)
item_length_file = load_pkl(file_paths.item_length_file)
test_set = AMDataset(file_paths.test_file, user_record_file, item_record_file, user_length_file, item_length_file,
logger, 'test')
args.batch_eval = int(args.batch_eval / ngpus_per_node)
test_loader = DataLoader(test_set, args.batch_eval, num_workers=4, collate_fn=my_fn)
test_num = len(test_set.labels)
logger.info('Num of test data {}'.format(test_num))
user_num = len(user_record_file)
args.NU = user_num
item_num = len(item_record_file)
args.NI = item_num
logger.info('Num of users {} items {}'.format(user_num, item_num))
logger.info('Initialize the model...')
if args.dynamic:
UEM = np.random.normal(0., 0.01, (args.T * args.NU + 1, args.NF))
IEM = np.random.normal(0., 0.01, (args.T * args.NI + 1, args.NF))
elif args.period:
UEM = np.random.normal(0., 0.01, (args.P * args.NU + 1, args.NF))
IEM = np.random.normal(0., 0.01, (args.P * args.NI + 1, args.NF))
else:
UEM = np.random.normal(0., 0.01, (args.NU + 1, args.NF))
IEM = np.random.normal(0., 0.01, (args.NI + 1, args.NF))
UEM[0] = 0.
IEM[0] = 0.
dropout = {'emb': args.emb_dropout, 'layer': args.layer_dropout}
model = getattr(rec_model, args.model)(UEM, IEM, args.state, args.T, args.P, args.NU, args.NI, args.NF,
args.n_class, args.n_hidden,
args.n_layer, dropout, logger).to(args.device)
# if args.is_distributed:
# model = torch.nn.parallel.DistributedDataParallel(
# model, device_ids=[args.local_rank], output_device=args.local_rank,
# this should be removed if we update BatchNorm stats
# broadcast_buffers=False)
# model = torch.nn.DataParallel(model)
# optimizer = getattr(optim, args.optim)(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# model, optimizer = amp.initialize(model, optimizer, opt_level="O0")
model = DistributedDataParallel(model)
logger.info(args.model_dir)
model.load_state_dict(torch.load(os.path.join(args.model_dir, 'model.bin')))
# eval_metrics, fpr, tpr, precision, recall = valid_batch(model, test_num, args.batch_eval, test_file,
# user_record_file, item_record_file, args.device,
# 'test', logger)
# test_loss = valid_batch(model, test_num, args.batch_eval, test_file, user_record_file, item_record_file,
# args.device)
test_loss = new_valid_epoch(model, test_loader, args)
logger.info('Test MSE - {}'.format(test_loss))
# logger.info('Test Acc - {}'.format(eval_metrics['acc']))
# logger.info('Test Precision - {}'.format(eval_metrics['precision']))
# logger.info('Test Recall - {}'.format(eval_metrics['recall']))
# logger.info('Test F1 - {}'.format(eval_metrics['f1']))
# logger.info('Test AUCROC - {}'.format(eval_metrics['auc_roc']))
# logger.info('Test AUCPRC - {}'.format(eval_metrics['auc_prc']))
# FALSE = {'FP': eval_metrics['fp'], 'FN': eval_metrics['fn']}
# ROC = {'FPR': fpr, 'TPR': tpr}
# PRC = {'PRECISION': precision, 'RECALL': recall}
#
# with open(os.path.join(args.result_dir, 'FALSE_test.json'), 'w') as f:
# f.write(json.dumps(FALSE) + '\n')
# f.close()
# with open(os.path.join(args.result_dir, 'ROC_test.json'), 'w') as f:
# f.write(json.dumps(ROC) + '\n')
# f.close()
# with open(os.path.join(args.result_dir, 'PRC_test.json'), 'w') as f:
# f.write(json.dumps(PRC) + '\n')
# f.close()
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
if __name__ == '__main__':
args = parse_args()
logger = logging.getLogger('Rec')
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# WORLD_SIZE 由torch.distributed.launch.py产生 具体数值为 nproc_per_node*node(主机数,这里为1)
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.is_distributed = num_gpus > 1
torch.manual_seed(args.seed)
if torch.cuda.is_available() and args.gpu > -1:
args.device = torch.device('cuda')
# torch.cuda.set_device(args.gpu)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
else:
args.device = torch.device('cpu')
logger.info('Preparing the directories...')
args.raw_dir = os.path.join(args.raw_dir, args.task)
if args.dynamic:
args.task = args.task + '_dynamic'
elif args.period:
args.task = args.task + '_period'
else:
args.task = args.task + '_static'
args.processed_dir = os.path.join(args.processed_dir, args.task)
hyps = "b{}_lr{}_wd{}_edp{}_ldp{}_wu{}_NF{}".format(args.batch_train, args.lr, args.weight_decay, args.emb_dropout,
args.layer_dropout, args.warmup, args.NF)
args.model_dir = os.path.join(args.outputs_dir, args.task, args.model, args.model_dir, hyps)
args.result_dir = os.path.join(args.outputs_dir, args.task, args.model, args.result_dir)
args.pics_dir = os.path.join(args.outputs_dir, args.task, args.model, args.pics_dir)
args.summary_dir = os.path.join(args.outputs_dir, args.task, args.model, args.summary_dir)
for dir_path in [args.raw_dir, args.processed_dir, args.model_dir, args.result_dir, args.pics_dir,
args.summary_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
class FilePaths(object):
def __init__(self):
self.train_file = os.path.join(args.processed_dir, 'train.pkl')
self.valid_file = os.path.join(args.processed_dir, 'valid.pkl')
self.test_file = os.path.join(args.processed_dir, 'test.pkl')
self.user_record_file = os.path.join(args.processed_dir, 'user_record.pkl')
self.item_record_file = os.path.join(args.processed_dir, 'item_record.pkl')
self.user_length_file = os.path.join(args.processed_dir, 'user_length.pkl')
self.item_length_file = os.path.join(args.processed_dir, 'item_length.pkl')
args.state = "static"
if args.dynamic:
args.state = "dynamic"
elif args.period:
args.state = "period"
logger.info('Running with args : {}'.format(args))
file_paths = FilePaths()
if args.prepare:
run_prepare(args, file_paths)
if args.train:
func_train(args, file_paths, args.local_rank, 2)
if args.test:
func_test(args, file_paths, args.local_rank, 2)