Skip to content

ResSys Experiment on Amazon Dataset utilizing time information

License

Notifications You must be signed in to change notification settings

shiningliang/HCoTemp

Repository files navigation

HCoTemp

Code for the paper Dynamic Item Feature Modelling for Rating Prediction in Recommender Systems

Data Preprocess

Download the Amazon Review dataset from this link

Static

nohup python rec_main.py --model Static_ID --prepare --epochs 5 --task AM_Games >prep_games_si.txt 2>&1 &

The output path will be data/processed_data/AM_Pets_static

Dynamic

nohup python rec_main.py --model Dynamic_ID --prepare --epochs 5 --task AM_Pets --dynamic >prep_pets_di.txt 2>&1 &

The output path will be data/processed_data/AM_Pets_dynamic

Period

nohup python rec_main.py --model Dynamic_COTEMP_GRAPH --prepare --epochs 5 --task AM_CD --period --P 6 >prep_cd_dcg_p6.txt 2>&1 &

The output path will be data/processed_data/AM_Pets_period

Parameters

--task dataset name, i.e., AM_**

--model processed data format (same as the model name),including: Static_ID, Static_COTEMP, Dynamic_ID, and Dynamic_COTEMP

--dynamic use Dynamic_** models

--P when you add --dynamic, user/item embedding is 36 months, i.e., T=36,if you use --P it's parameter, X, indicated the length of period for empress embeddings, i.e., T=T/X

Training&Testing

Static

nohup python -m torch.distributed.launch --nproc_per_node=2 rec_run.py --model Static_COTEMP --train --test --epochs 3 --task AM_Pets --batch_train 8 --batch_eval 8 --lr 1e-4 --weight_decay 3e-3 >train_pets_static_b8lr1e-4wd3e-3.txt 2>&1 &

Dynamic

nohup python -m torch.distributed.launch --nproc_per_node=1 rec_run.py --model Dynamic_COTEMP --train --test --epochs 3 --task AM_CD --batch_train 32 --batch_eval 32 --lr 1e-4 --weight_decay 3e-3 --period --P 6 >train_cd_p6_b32n1lr1e-4wd3e-3.txt 2>&1 &

Init item nodem embeddings

nohup python -m torch.distributed.launch --nproc_per_node=2 rec_run.py --model Static_ID_GRAPH --train --test --epochs 3 --task AM_Pets --batch_train 8 --batch_eval 8 --lr 1e-4 --weight_decay 3e-3

HCoTemp

(Below is for Period, others are similar)

nohup python rec_run_hg.py --train --test --period --P 6 --lr 0.0001 --epochs 3 --han_out_size 64 >train_games_hgdc_p6_b32n1lr1e-4wd3e-4ep3.txt 2>&1 &

Requirements

pytorch-transformers=1.2

pytorch-pretrained-bert=0.6.2

pytorch>=1.2

nvidia amp

About

ResSys Experiment on Amazon Dataset utilizing time information

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages