(Published by IEEE Transactions on Systems, Man, and Cybernetics: Systems) published paper. Preprint version arxiv paper
- A docker will be released soon for testing SSL, SCT, and MCTA
- Prepare data for SSL training and testing
- Train initial Supervised Learning (SL) ResNet-50 (PANet) model using train set
- Generate pseudo-labels for training ResNet-50 (PANet) model
- Train iteratively using pseudo labels
- Test the SSL detector model
- Finetune Tracktor detector (ResNet-50 Faster-RCNN) using SSL FRCNN or SSL PANet predictions
- Evaluate the SCT model
- Prepare the precomputed SCT tracklets (offline)
- Evaluate the MCTA model
- Python 3.6
- Pytorch 0.4.0
- CUDA 9.2
- Pycocotools 2.0
- CUDA 11.2
- Python 3.8
- Pytorch 1.9
- Pycocotools 2.0
- clone this repository and go to root folder
https://github.com/siddiquemu/SCT_MCTA.git
cd SCT_MCTA/SSL_PANet
- create environment by following instance segmentation network PANet (need torch 0.4.0)
pip install -r panet_requirements.yml
- Dataset preparation for running PANet-based SSL
- For unlabeled data following command from SSL_PANet root folder
python tools/clasp_unlabeled_json.py
- For labeled data run the following
python tools/clasp_gt_annotations.py
- For joint labeled and unlabeled data preparation
python tools/CLASP_SSL/b2mask_clasp1_annotations.py
- For labeled, unlabeled, and augmentded data preparation run the above two steps and then run the following
for ITER in 4; do bash tools/train_semi_iters_clasp1.sh SSL_pseudo_labels ${ITER} 10 2; done
- Start iterative training (including pseudo-label generation steps) using the following command
for ITER in 4; do bash tools/train_semi_iters_clasp1.sh SSL_aug_train ${ITER} 10 2; done
- clone this repository and go to root folder
https://github.com/siddiquemu/SCT_MCTA.git
cd SCT_MCTA/tracking_wo_bnw
- Install tracktor similar to Tracktor but we do not need to clone latest repo.
- Run the command
cd SCT_MCTA/SSL_FRCNN
python clasp_det.py
- Edit the configs for data and pretrained model directories
./cfg/SSL.yaml
clasp_det.py
- Collect data upon request at [email protected]
Folder structure for CLASP1 datasets:
CLASP1/train_gt
├── A_11
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── A_9
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── B_11
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── B_9
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── C_11
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── C_9
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── D_11
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── D_9
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── E_11
│ ├── gt
│ ├── img1
│ ├── test_frames
│ └── train_frames
└── E_9
├── gt
├── img1
├── test_frames
└── train_frames
Folder structure for CLASP2 datasets:
CLASP2/train_gt/
├── G_11
│ ├── gt
│ ├── gt_sct
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── G_9
│ ├── gt
│ ├── gt_sct
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── H_11
│ ├── gt
│ ├── gt_sct
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── H_9
│ ├── gt
│ ├── gt_sct
│ ├── img1
│ ├── test_frames
│ └── train_frames
├── I_11
│ ├── gt
│ ├── gt_sct
│ ├── img1
│ ├── test_frames
│ └── train_frames
└── I_9
├── gt
├── gt_sct
├── img1
├── test_frames
└── train_frames
- run the following script from root to generate the train/test split
cd SCT_MCTA/SSL_PANet
-
To test the models, download models from
-
run the following script to evaluate the SSL detector models
bash run_ssl_panet.sh
[x] To train the SL model using train set:
cd SCT_MCTA/SSL_PANet
- run the following script to generate pseudo-labels for the unlabeled frames
for ITER in 1; do bash train_semi_iters_clasp1.sh SSL_pseudo_labels ${ITER} 0 2; done
- run the following to start training using the generated psudo-labels
for ITER in 1; do bash train_semi_iters_clasp1.sh SSL_aug_train ${ITER} 0 2; done
This codebase is heavily based on SCT Tracktor.
Will be updated soon...
If you find this work helpful in your research, please cite using the following bibtex
@ARTICLE{siddiqueMulticamTSMC2022,
author={Siddique, Abubakar and Medeiros, Henry},
journal={IEEE Transactions on Systems, Man, and Cybernetics: Systems},
title={Tracking Passengers and Baggage Items Using Multiple Overhead Cameras at Security Checkpoints},
year={2022},
volume={},
number={},
pages={1-13},
doi={10.1109/TSMC.2022.3225252}}