Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dadac integration alt #107

Open
wants to merge 23 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/docs.yml
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
name: docs

on:
workflow_dispatch:
push:
branches:
- opensource
Expand Down
1 change: 1 addition & 0 deletions .github/workflows/lint.yml
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
name: lint

on:
workflow_dispatch:
push:
branches:
- develop
Expand Down
1 change: 1 addition & 0 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
name: test

on:
workflow_dispatch:
push:
branches:
- develop
Expand Down
175 changes: 117 additions & 58 deletions dadapy/clustering.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
"""

import multiprocessing
import platform
import time
import warnings

Expand All @@ -28,6 +29,17 @@

from dadapy._cython import cython_clustering as cf
from dadapy._cython import cython_clustering_v2 as cf2

try:
from dadac import Data as c_data
except ModuleNotFoundError:
warnings.warn(
"""C accelerated implementation is not provided,
something went wrong when installing dadac dependency""",
stacklevel=2,
)


from dadapy.density_estimation import DensityEstimation

cores = multiprocessing.cpu_count()
Expand Down Expand Up @@ -77,7 +89,7 @@ def __init__(
self.delta = None # Minimum distance from an element with higher density
self.ref = None # Index of the nearest element with higher density

def compute_clustering_ADP(self, Z=1.65, halo=False, v2=False):
def compute_clustering_ADP(self, Z=1.65, halo=False, impl="c", v2=False):
"""Compute clustering according to the algorithm DPA.

The only free parameter is the merging factor Z, which controls how the different density peaks are merged
Expand All @@ -87,6 +99,8 @@ def compute_clustering_ADP(self, Z=1.65, halo=False, v2=False):
Args:
Z(float): merging parameter
halo (bool): compute (or not) the halo points
impl (str): default "c", implementation type "c" uses optimized implementation written in pure C,
"py" uses original dadapy implementation

Returns:
cluster_assignment (np.ndarray(int)): assignment of points to specific clusters
Expand All @@ -96,75 +110,120 @@ def compute_clustering_ADP(self, Z=1.65, halo=False, v2=False):
non-parametric density peak clustering, Information Sciences 560 (2021) 476–492

"""
if self.log_den is None:
self.compute_density_PAk()

assert not np.isnan(np.sum(self.log_den)), "log density contains nan values"
assert not np.isnan(
np.sum(self.log_den_err)
), "log error density contains nan values"

if self.verb:
print("Clustering started")

if v2 is True:
try:
# try to generate the dadac handler, if it fails print a warning and then
# fall back to default
dadac_handler = c_data(self.X, verbose=self.verb)
except NameError:
warnings.warn(
"""using adp implementation v2: this requires less memory but can
be two times slower than the original implementation""",
f"""Cannot load dadac.Data, falling back to python/cython implementation.
This is can be caused from the fact that you are running from a non Linux system.
Your platform, is {platform.platform()}, please refer to dadaC docs to manually install
the package""",
stacklevel=2,
)
impl = "py"

# Make all values of log_den positives (this is important to help convergence)
# even when subtracting the value Z*log_den_err
log_den_min = np.min(self.log_den - Z * self.log_den_err)
log_den_c = self.log_den - log_den_min + 1
if impl == "py":
if self.log_den is None:
self.compute_density_PAk()

# Putative modes of the PDF as preliminary clusters
g = log_den_c - self.log_den_err
assert not np.isnan(np.sum(self.log_den)), "log density contains nan values"
assert not np.isnan(
np.sum(self.log_den_err)
), "log error density contains nan values"

# centers are point of max density (max(g) ) within their optimal neighborhood (defined by kstar)
seci = time.time()
if self.verb:
print("Clustering started")

if v2:
out = cf2._compute_clustering(
Z,
halo,
self.kstar,
self.dist_indices.astype(int),
self.maxk,
self.verb,
self.log_den_err,
log_den_c,
g,
self.N,
)
if v2 is True:
warnings.warn(
"""using adp implementation v2: this requires less memory but can
be two times slower than the original implementation""",
stacklevel=2,
)

# Make all values of log_den positives (this is important to help convergence)
# even when subtracting the value Z*log_den_err
log_den_min = np.min(self.log_den - Z * self.log_den_err)
log_den_c = self.log_den - log_den_min + 1

# Putative modes of the PDF as preliminary clusters
g = log_den_c - self.log_den_err

# centers are point of max density (max(g) ) within their optimal neighborhood (defined by kstar)
seci = time.time()

if v2:
out = cf2._compute_clustering(
Z,
halo,
self.kstar,
self.dist_indices.astype(int),
self.maxk,
self.verb,
self.log_den_err,
log_den_c,
g,
self.N,
)
else:
out = cf._compute_clustering(
Z,
halo,
self.kstar,
self.dist_indices.astype(int),
self.maxk,
self.verb,
self.log_den_err,
log_den_c,
g,
self.N,
)

secf = time.time()

self.cluster_indices = out[0]
self.N_clusters = out[1]
self.cluster_assignment = out[2]
self.cluster_centers = out[3]
print(self.cluster_centers)
self.log_den_bord = out[4] + log_den_min - 1
self.log_den_bord_err = out[5]
self.bord_indices = out[6]

if self.verb:
print(f"Clustering finished, {self.N_clusters} clusters found")
print(f"total time is, {secf - seci}")
else:
out = cf._compute_clustering(
Z,
halo,
self.kstar,
self.dist_indices.astype(int),
self.maxk,
self.verb,
self.log_den_err,
log_den_c,
g,
self.N,
# handle with dadaC
if self.log_den is None:
self.compute_density_PAk()
log_den_min = np.min(self.log_den - Z * self.log_den_err)
dadac_handler.import_density(self.log_den, self.log_den_err, self.kstar)
dadac_handler.import_neighbors_and_distances(
self.dist_indices, self.distances
)
dadac_handler.compute_clustering_ADP(Z, halo)

secf = time.time()
print("Exporting results to python")

self.cluster_indices = out[0]
self.N_clusters = out[1]
self.cluster_assignment = out[2]
self.cluster_centers = out[3]
self.log_den_bord = out[4] + log_den_min - 1
self.log_den_bord_err = out[5]
self.bord_indices = out[6]
from copy import deepcopy

if self.verb:
print(f"Clustering finished, {self.N_clusters} clusters found")
print(f"total time is, {secf - seci}")
self.N_clusters = deepcopy(dadac_handler.N_clusters)
self.cluster_assignment = deepcopy(dadac_handler.cluster_assignment)
self.cluster_centers = deepcopy(dadac_handler.cluster_centers)
self.bord_indices = deepcopy(dadac_handler.border_indices)

# subtract a one on the diagonal only for consistency with the original implementation and conventions
self.log_den_bord = deepcopy(dadac_handler.log_den_bord + log_den_min - 1.0)
self.log_den_bord_err = deepcopy(dadac_handler.log_den_bord_err)

idxs = np.array([i for i in range(self.N)])
self.cluster_indices = [
idxs[np.where(self.cluster_assignment == c)]
for c in range(self.N_clusters)
]

return self.cluster_assignment

Expand Down
191 changes: 116 additions & 75 deletions examples/notebook_on_intrinsicdim_densityest_clustering.ipynb

Large diffs are not rendered by default.

3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,8 @@ license = {file = "LICENSE"}
readme = "README.md"
requires-python = ">=3.7"

dependencies = ["numpy", "scipy", "scikit-learn", "matplotlib"]
dependencies = ["numpy", "scipy", "scikit-learn", "matplotlib", "dadac @ git+https://github.com/lykos98/dadaC"]


[project.urls]
homepage = "https://github.com/sissa-data-science/DADApy"
Expand Down
4 changes: 3 additions & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,4 +7,6 @@ numpy
scipy
scikit-learn
joblib
matplotlib
matplotlib
-e git+https://github.com/lykos98/dadaC

4 changes: 3 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def __str__(self):
sources=["dadapy/_cython/cython_differentiable_imbalance.c"],
include_dirs=[get_numpy_include()],
define_macros=[("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")],
)
),
]

extra_compile_args = (["-fopenmp"],)
Expand All @@ -108,4 +108,6 @@ def __str__(self):
ext_modules=ext_modules,
include_package_data=True,
package_data={"dadapy": ["_utils/discrete_volumes/*.dat"]},
install_requires=["dadac"],
dependency_links=["git+https://github.com/lykos98/dadaC"],
)
Loading
Loading