Skip to content

Latest commit

 

History

History
54 lines (53 loc) · 17.8 KB

File metadata and controls

54 lines (53 loc) · 17.8 KB

Weekly Classified Neural Radiance Fields - texture Awesome

Filter by classes:

all | dynamic | editing | fast | generalization | human | video | lighting | reconstruction | texture | semantic | pose-slam | others

Dec27 - Jan3, 2023

Dec25 - Dec31, 2022

Dec18 - Dec24, 2022

Dec11 - Dec17, 2022

Dec4 - Dec10, 2022

Nov27 - Dec3, 2022

Nov20 - Nov26, 2022

Nov13 - Nov19, 2022

Nov6 - Nov12, 2022

Oct30 - Nov5, 2022

  • Deep Appearance Prefiltering, ToG2022 | [code]

    Physically based rendering of complex scenes can be prohibitively costly with a potentially unbounded and uneven distribution of complexity across the rendered image. The goal of an ideal level of detail (LoD) method is to make rendering costs independent of the 3D scene complexity, while preserving the appearance of the scene. However, current prefiltering LoD methods are limited in the appearances they can support due to their reliance of approximate models and other heuristics. We propose the first comprehensive multi-scale LoD framework for prefiltering 3D environments with complex geometry and materials (e.g., the Disney BRDF), while maintaining the appearance with respect to the ray-traced reference. Using a multi-scale hierarchy of the scene, we perform a data-driven prefiltering step to obtain an appearance phase function and directional coverage mask at each scale. At the heart of our approach is a novel neural representation that encodes this information into a compact latent form that is easy to decode inside a physically based renderer. Once a scene is baked out, our method requires no original geometry, materials, or textures at render time. We demonstrate that our approach compares favorably to state-of-the-art prefiltering methods and achieves considerable savings in memory for complex scenes.

Oct23 - Oct29, 2022

Oct16 - Oct22, 2022

Oct9 - Oct15, 2022

  • IBL-NeRF: Image-Based Lighting Formulation of Neural Radiance Fields | [code]

    We propose IBL-NeRF, which decomposes the neural radiance fields (NeRF) of large-scale indoor scenes into intrinsic components. Previous approaches for the inverse rendering of NeRF transform the implicit volume to fit the rendering pipeline of explicit geometry, and approximate the views of segmented, isolated objects with environment lighting. In contrast, our inverse rendering extends the original NeRF formulation to capture the spatial variation of lighting within the scene volume, in addition to surface properties. Specifically, the scenes of diverse materials are decomposed into intrinsic components for image-based rendering, namely, albedo, roughness, surface normal, irradiance, and prefiltered radiance. All of the components are inferred as neural images from MLP, which can model large-scale general scenes. By adopting the image-based formulation of NeRF, our approach inherits superior visual quality and multi-view consistency for synthesized images. We demonstrate the performance on scenes with complex object layouts and light configurations, which could not be processed in any of the previous works.

  • NeuralRoom: Geometry-Constrained Neural Implicit Surfaces for Indoor Scene Reconstruction | [code]

    We present a novel neural surface reconstruction method called NeuralRoom for reconstructing room-sized indoor scenes directly from a set of 2D images. Recently, implicit neural representations have become a promising way to reconstruct surfaces from multiview images due to their high-quality results and simplicity. However, implicit neural representations usually cannot reconstruct indoor scenes well because they suffer severe shape-radiance ambiguity. We assume that the indoor scene consists of texture-rich and flat texture-less regions. In texture-rich regions, the multiview stereo can obtain accurate results. In the flat area, normal estimation networks usually obtain a good normal estimation. Based on the above observations, we reduce the possible spatial variation range of implicit neural surfaces by reliable geometric priors to alleviate shape-radiance ambiguity. Specifically, we use multiview stereo results to limit the NeuralRoom optimization space and then use reliable geometric priors to guide NeuralRoom training. Then the NeuralRoom would produce a neural scene representation that can render an image consistent with the input training images. In addition, we propose a smoothing method called perturbation-residual restrictions to improve the accuracy and completeness of the flat region, which assumes that the sampling points in a local surface should have the same normal and similar distance to the observation center. Experiments on the ScanNet dataset show that our method can reconstruct the texture-less area of indoor scenes while maintaining the accuracy of detail. We also apply NeuralRoom to more advanced multiview reconstruction algorithms and significantly improve their reconstruction quality.

Oct2 - Oct8, 2022

Sep25 - Oct1, 2022

Sep18 - Sep24, 2022

  • SG-SRNs: Superpixel-Guided Scene Representation Networks, SignalProcessingLetters | [code]

    Recently, Scene Representation Networks (SRNs) have attracted increasing attention in computer vision, due to their continuous and light-weight scene representation ability. However, SRNs generally perform poorly on low-texture image regions. Addressing this problem, we propose superpixel-guided scene representation networks in this paper, called SG-SRNs, consisting of a backbone module (SRNs), a superpixel segmentation module, and a superpixel regularization module. In the proposed method, except for the novel view synthesis task, the task of representation-aware superpixel segmentation mask generation is realized by the proposed superpixel segmentation module. Then, the superpixel regularization module utilizes the superpixel segmentation mask to guide the backbone to be learned in a locally smooth way, and optimizes the scene representations of the local regions to indirectly alleviate the structure distortion of low-texture regions in a self-supervised manner. Extensive experimental results on both our constructed datasets and the public Synthetic-NeRF dataset demonstrated that the proposed SG-SRNs achieved a significantly better 3D structure representing performance.

  • Human Performance Modeling and Rendering via Neural Animated Mesh | [code]

    We have recently seen tremendous progress in the neural advances for photo-real human modeling and rendering. However, it's still challenging to integrate them into an existing mesh-based pipeline for downstream applications. In this paper, we present a comprehensive neural approach for high-quality reconstruction, compression, and rendering of human performances from dense multi-view videos. Our core intuition is to bridge the traditional animated mesh workflow with a new class of highly efficient neural techniques. We first introduce a neural surface reconstructor for high-quality surface generation in minutes. It marries the implicit volumetric rendering of the truncated signed distance field (TSDF) with multi-resolution hash encoding. We further propose a hybrid neural tracker to generate animated meshes, which combines explicit non-rigid tracking with implicit dynamic deformation in a self-supervised framework. The former provides the coarse warping back into the canonical space, while the latter implicit one further predicts the displacements using the 4D hash encoding as in our reconstructor. Then, we discuss the rendering schemes using the obtained animated meshes, ranging from dynamic texturing to lumigraph rendering under various bandwidth settings. To strike an intricate balance between quality and bandwidth, we propose a hierarchical solution by first rendering 6 virtual views covering the performer and then conducting occlusion-aware neural texture blending. We demonstrate the efficacy of our approach in a variety of mesh-based applications and photo-realistic free-view experiences on various platforms, i.e., inserting virtual human performances into real environments through mobile AR or immersively watching talent shows with VR headsets.

Sep11 - Sep17, 2022

  • StructNeRF: Neural Radiance Fields for Indoor Scenes with Structural Hints | [code]

    Neural Radiance Fields (NeRF) achieve photo-realistic view synthesis with densely captured input images. However, the geometry of NeRF is extremely under-constrained given sparse views, resulting in significant degradation of novel view synthesis quality. Inspired by self-supervised depth estimation methods, we propose StructNeRF, a solution to novel view synthesis for indoor scenes with sparse inputs. StructNeRF leverages the structural hints naturally embedded in multi-view inputs to handle the unconstrained geometry issue in NeRF. Specifically, it tackles the texture and non-texture regions respectively: a patch-based multi-view consistent photometric loss is proposed to constrain the geometry of textured regions; for non-textured ones, we explicitly restrict them to be 3D consistent planes. Through the dense self-supervised depth constraints, our method improves both the geometry and the view synthesis performance of NeRF without any additional training on external data. Extensive experiments on several real-world datasets demonstrate that StructNeRF surpasses state-of-the-art methods for indoor scenes with sparse inputs both quantitatively and qualitatively.

Sep4 - Sep10, 2022

  • 3D Textured Shape Recovery with Learned Geometric Priors | [code]

    3D textured shape recovery from partial scans is crucial for many real-world applications. Existing approaches have demonstrated the efficacy of implicit function representation, but they suffer from partial inputs with severe occlusions and varying object types, which greatly hinders their application value in the real world. This technical report presents our approach to address these limitations by incorporating learned geometric priors. To this end, we generate a SMPL model from learned pose prediction and fuse it into the partial input to add prior knowledge of human bodies. We also propose a novel completeness-aware bounding box adaptation for handling different levels of scales and partialness of partial scans.

Aug28 - Sep3, 2022

Aug21 - Aug27, 2022

Aug14 - Aug20, 2022

Aug7 - Aug13, 2022

Jul31 - Aug6, 2022

Jul24 - Jul30, 2022

  • ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and Pose Optimization, ECCV2022 | [code]

    Our method studies the complex task of object-centric 3D understanding from a single RGB-D observation. As it is an ill-posed problem, existing methods suffer from low performance for both 3D shape and 6D pose and size estimation in complex multi-object scenarios with occlusions. We present ShAPO, a method for joint multi-object detection, 3D textured reconstruction, 6D object pose and size estimation. Key to ShAPO is a single-shot pipeline to regress shape, appearance and pose latent codes along with the masks of each object instance, which is then further refined in a sparse-to-dense fashion. A novel disentangled shape and appearance database of priors is first learned to embed objects in their respective shape and appearance space. We also propose a novel, octree-based differentiable optimization step, allowing us to further improve object shape, pose and appearance simultaneously under the learned latent space, in an analysis-by-synthesis fashion. Our novel joint implicit textured object representation allows us to accurately identify and reconstruct novel unseen objects without having access to their 3D meshes. Through extensive experiments, we show that our method, trained on simulated indoor scenes, accurately regresses the shape, appearance and pose of novel objects in the real-world with minimal fine-tuning. Our method significantly out-performs all baselines on the NOCS dataset with an 8% absolute improvement in mAP for 6D pose estimation.

  • NeuMesh: Learning Disentangled Neural Mesh-based Implicit Field for Geometry and Texture Editing, ECCV2022(oral) | [code]

    Very recently neural implicit rendering techniques have been rapidly evolved and shown great advantages in novel view synthesis and 3D scene reconstruction. However, existing neural rendering methods for editing purposes offer limited functionality, e.g., rigid transformation, or not applicable for fine-grained editing for general objects from daily lives. In this paper, we present a novel mesh-based representation by encoding the neural implicit field with disentangled geometry and texture codes on mesh vertices, which facilitates a set of editing functionalities, including mesh-guided geometry editing, designated texture editing with texture swapping, filling and painting operations. To this end, we develop several techniques including learnable sign indicators to magnify spatial distinguishability of mesh-based representation, distillation and fine-tuning mechanism to make a steady convergence, and the spatial-aware optimization strategy to realize precise texture editing. Extensive experiments and editing examples on both real and synthetic data demonstrate the superiority of our method on representation quality and editing ability. Code is available on the project webpage: this https URL.

Previous weeks

  • CodeNeRF: Disentangled Neural Radiance Fields for Object Categories, ICCV2021(oral) | [code]

    CodeNeRF is an implicit 3D neural representation that learns the variation of object shapes and textures across a category and can be trained, from a set of posed images, to synthesize novel views of unseen objects. Unlike the original NeRF, which is scene specific, CodeNeRF learns to disentangle shape and texture by learning separate embeddings. At test time, given a single unposed image of an unseen object, CodeNeRF jointly estimates camera viewpoint, and shape and appearance codes via optimization. Unseen objects can be reconstructed from a single image, and then rendered from new viewpoints or their shape and texture edited by varying the latent codes. We conduct experiments on the SRN benchmark, which show that CodeNeRF generalises well to unseen objects and achieves on-par performance with methods that require known camera pose at test time. Our results on real-world images demonstrate that CodeNeRF can bridge the sim-to-real gap.

  • Unsupervised Discovery of Object Radiance Fields, ICLR2022 | [code]

    We study the problem of inferring an object-centric scene representation from a single image, aiming to derive a representation that explains the image formation process, captures the scene's 3D nature, and is learned without supervision. Most existing methods on scene decomposition lack one or more of these characteristics, due to the fundamental challenge in integrating the complex 3D-to-2D image formation process into powerful inference schemes like deep networks. In this paper, we propose unsupervised discovery of Object Radiance Fields (uORF), integrating recent progresses in neural 3D scene representations and rendering with deep inference networks for unsupervised 3D scene decomposition. Trained on multi-view RGB images without annotations, uORF learns to decompose complex scenes with diverse, textured background from a single image. We show that uORF performs well on unsupervised 3D scene segmentation, novel view synthesis, and scene editing on three datasets.

  • NeRF-Tex: Neural Reflectance Field Textures, EGSR2021 | [code]

    We investigate the use of neural fields for modeling diverse mesoscale structures, such as fur, fabric, and grass. Instead of using classical graphics primitives to model the structure, we propose to employ a versatile volumetric primitive represented by a neural reflectance field (NeRF-Tex), which jointly models the geometry of the material and its response to lighting. The NeRF-Tex primitive can be instantiated over a base mesh to “texture” it with the desired meso and microscale appearance. We condition the reflectance field on user-defined parameters that control the appearance. A single NeRF texture thus captures an entire space of reflectance fields rather than one specific structure. This increases the gamut of appearances that can be modeled and provides a solution for combating repetitive texturing artifacts. We also demonstrate that NeRF textures naturally facilitate continuous level-of-detail rendering. Our approach unites the versatility and modeling power of neural networks with the artistic control needed for precise modeling of virtual scenes. While all our training data is currently synthetic, our work provides a recipe that can be further extended to extract complex, hard-to-model appearances from real images.