-
Notifications
You must be signed in to change notification settings - Fork 51
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
70252b5
commit 479b7f7
Showing
1 changed file
with
161 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# copyright: skpro developers, BSD-3-Clause License (see LICENSE file) | ||
"""Pareto probability distribution.""" | ||
|
||
__author__ = ["sukjingitsit"] | ||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
from skpro.distributions.base import BaseDistribution | ||
|
||
|
||
class Pareto(BaseDistribution): | ||
r"""Pareto distribution (skpro native). | ||
The scale :math:`x_m` is represented by the parameter ``xm``, | ||
and the Pareto index (or shape parameter) :math:`\alpha` | ||
by the parameter ``alpha``. | ||
Parameters | ||
---------- | ||
xm : float or array of float (1D or 2D), must be positive | ||
scale of the Pareto distribution | ||
alpha : float or array of float (1D or 2D), must be positive | ||
shape of the Pareto distribution | ||
index : pd.Index, optional, default = RangeIndex | ||
columns : pd.Index, optional, default = RangeIndex | ||
Example | ||
------- | ||
>>> from skpro.distributions.pareto import Pareto | ||
>>> n = Pareto(xm=[[1, 1.5], [2, 2.5], [3, 4]], alpha=3) | ||
""" | ||
|
||
_tags = { | ||
"capabilities:approx": ["pdfnorm", "energy"], | ||
"capabilities:exact": ["mean", "var", "pdf", "log_pdf", "cdf", "ppf"], | ||
"distr:measuretype": "continuous", | ||
"distr:paramtype": "parametric", | ||
"broadcast_init": "on", | ||
} | ||
|
||
def __init__(self, xm, alpha, index=None, columns=None): | ||
self.xm = xm | ||
self.alpha = alpha | ||
|
||
super().__init__(index=index, columns=columns) | ||
|
||
def _mean(self): | ||
"""Return expected value of the distribution. | ||
Returns | ||
------- | ||
2D np.ndarray, same shape as ``self`` | ||
expected value of distribution (entry-wise) | ||
""" | ||
alpha = self._bc_params["alpha"] | ||
xm = self._bc_params["xm"] | ||
mean = np.where(alpha <= 1, np.infty, xm**alpha / (alpha - 1)) | ||
return mean | ||
|
||
def _var(self): | ||
r"""Return element/entry-wise variance of the distribution. | ||
Returns | ||
------- | ||
2D np.ndarray, same shape as ``self`` | ||
variance of the distribution (entry-wise) | ||
""" | ||
alpha = self._bc_params["alpha"] | ||
xm = self._bc_params["xm"] | ||
var = np.where( | ||
alpha <= 2, np.infty, xm**2 * alpha / ((alpha - 2) * (alpha - 1) ** 2) | ||
) | ||
return var | ||
|
||
def _pdf(self, x): | ||
"""Probability density function. | ||
Parameters | ||
---------- | ||
x : 2D np.ndarray, same shape as ``self`` | ||
values to evaluate the pdf at | ||
Returns | ||
------- | ||
2D np.ndarray, same shape as ``self`` | ||
pdf values at the given points | ||
""" | ||
alpha = self._bc_params["alpha"] | ||
xm = self._bc_params["xm"] | ||
pdf_arr = alpha * np.power(xm, alpha) | ||
pdf_arr /= np.power(x, alpha + 1) | ||
return pdf_arr | ||
|
||
def _log_pdf(self, x): | ||
"""Logarithmic probability density function. | ||
Parameters | ||
---------- | ||
x : 2D np.ndarray, same shape as ``self`` | ||
values to evaluate the pdf at | ||
Returns | ||
------- | ||
2D np.ndarray, same shape as ``self`` | ||
log pdf values at the given points | ||
""" | ||
alpha = self._bc_params["alpha"] | ||
xm = self._bc_params["xm"] | ||
return np.log(alpha / x) + alpha * np.log(xm / x) | ||
|
||
def _cdf(self, x): | ||
"""Cumulative distribution function. | ||
Parameters | ||
---------- | ||
x : 2D np.ndarray, same shape as ``self`` | ||
values to evaluate the cdf at | ||
Returns | ||
------- | ||
2D np.ndarray, same shape as ``self`` | ||
cdf values at the given points | ||
""" | ||
alpha = self._bc_params["alpha"] | ||
xm = self._bc_params["xm"] | ||
cdf_arr = np.where(x < xm, 0, 1 - np.power(xm / x, alpha)) | ||
return cdf_arr | ||
|
||
def _ppf(self, p): | ||
"""Quantile function = percent point function = inverse cdf. | ||
Parameters | ||
---------- | ||
p : 2D np.ndarray, same shape as ``self`` | ||
values to evaluate the ppf at | ||
Returns | ||
------- | ||
2D np.ndarray, same shape as ``self`` | ||
ppf values at the given points | ||
""" | ||
alpha = self._bc_params["alpha"] | ||
xm = self._bc_params["xm"] | ||
return xm / np.power(1 - p, 1 / alpha) | ||
|
||
@classmethod | ||
def get_test_params(cls, parameter_set="default"): | ||
"""Return testing parameter settings for the estimator.""" | ||
# array case examples | ||
params1 = {"xm": [[1, 1.5], [2, 3], [4, 5]], "alpha": 3} | ||
params2 = { | ||
"xm": 1, | ||
"alpha": 3, | ||
"index": pd.Index([1, 2, 5]), | ||
"columns": pd.Index(["a", "b"]), | ||
} | ||
# scalar case examples | ||
params3 = {"xm": 1, "alpha": 2} | ||
return [params1, params2, params3] |