Skip to content

Commit

Permalink
update figure caption
Browse files Browse the repository at this point in the history
  • Loading branch information
JiaxuanYou committed Jun 29, 2021
1 parent 75d1e91 commit 8a4b459
Showing 1 changed file with 13 additions and 11 deletions.
24 changes: 13 additions & 11 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ Using existing packages for GNN, you still have to code up the essential pipelin
GraphGym is a perfect place for your to start learning *standardized GNN implementation and evaluation*.

<div align="center">
<img align="center" src="https://github.com/snap-stanford/GraphGym/blob/master/docs/design_space.png" width="400px" />
<figcaption><b><br>Figure 1: Modularized GNN implementation.</b></figcaption>
<img align="center" src="https://github.com/snap-stanford/GraphGym/raw/master/docs/design_space.png" width="400px" />
<b><br>Figure 1: Modularized GNN implementation.</b>
</div>

<br>
Expand All @@ -51,10 +51,11 @@ GraphGym provides a *simple interface to try out thousands of GNNs in parallel*
GraphGym also recommends a "go-to" GNN design space, after investigating 10 million GNN model-task combinations.

<div align="center">
<img align="center" src="https://github.com/snap-stanford/GraphGym/blob/master/docs/rank.png" width="1000px" />
<figcaption><b><br>Figure 2: A guideline for desirable GNN design choices. <br>(Sampling from 10 million GNN model-task combinations.) </b></figcaption>
<img align="center" src="https://github.com/snap-stanford/GraphGym/raw/master/docs/rank.png" width="1000px" />
<b><br>Figure 2: A guideline for desirable GNN design choices.</b> <br>(Sampling from 10 million GNN model-task combinations.)
</div>


<br>


Expand All @@ -67,10 +68,11 @@ Moreover, GraphGym can help you easily do hyper-parameter search, and *visualize
In sum, GraphGym can greatly facilitate your GNN research.

<div align="center">
<img align="center" src="https://github.com/snap-stanford/GraphGym/blob/master/docs/evaluation.png" width="1000px" />
<figcaption><b><br>Figure 3: Evaluation of a given GNN design dimension (BatchNorm here).</b></figcaption>
<img align="center" src="https://github.com/snap-stanford/GraphGym/raw/master/docs/evaluation.png" width="1000px" />
<b><br>Figure 3: Evaluation of a given GNN design dimension</b> (BatchNorm here).
</div>


<br>

## Installation
Expand Down Expand Up @@ -228,7 +230,7 @@ For example, the base file could specify an experiment of 3-layer GCN for Cora n
Then, the grid file specifies how to perturb the experiment along different dimension, such as number of layers,
model architecture, dataset, level of task, etc.


**2.4 Generate config files for the batch of experiments,** based on the information specified above.
For example, in [`run/run_batch.sh`](run/run_batch.sh):
```bash
Expand Down Expand Up @@ -322,8 +324,8 @@ design_space.ipynb # reproducing all the analyses in the paper
```

<div align="center">
<img align="center" src="https://github.com/snap-stanford/GraphGym/blob/master/docs/overview.png" width="900px" />
<figcaption><b><br>Figure 4: Overview of the proposed GNN design space and task space.</b></figcaption>
<img align="center" src="https://github.com/snap-stanford/GraphGym/raw/master/docs/overview.png" width="900px" />
<b><br>Figure 4: Overview of the proposed GNN design space and task space.</b>
</div>


Expand All @@ -343,8 +345,8 @@ bash run_idgnn_graph.sh # Reproduce ID-GNN graph-level results
```

<div align="center">
<img align="center" src="https://github.com/snap-stanford/GraphGym/blob/master/docs/IDGNN.png" width="900px" />
<figcaption><b><br>Figure 5: Overview of Identity-aware Graph Neural Networks (ID-GNN).</b></figcaption>
<img align="center" src="https://github.com/snap-stanford/GraphGym/raw/master/docs/IDGNN.png" width="900px" />
<b><br>Figure 5: Overview of Identity-aware Graph Neural Networks (ID-GNN).</b>
</div>


Expand Down

0 comments on commit 8a4b459

Please sign in to comment.