-
Notifications
You must be signed in to change notification settings - Fork 135
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #245 from danbev/embeddings-plus-updated-llama.cpp
llama: add Embeddings for llama
- Loading branch information
Showing
11 changed files
with
365 additions
and
23 deletions.
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
use llm_chain::options; | ||
use llm_chain::traits::Embeddings; | ||
|
||
/// This example demonstrates using llm-chain-llama for generating | ||
/// embeddings. | ||
/// | ||
/// Usage: | ||
/// env LLM_CHAIN_MODEL=<path_to_model> cargo run --example simple_embeddings | ||
/// | ||
#[tokio::main] | ||
async fn main() -> Result<(), Box<dyn std::error::Error>> { | ||
let opts = options!( | ||
NThreads: 4_usize, | ||
MaxTokens: 2048_usize | ||
); | ||
let embeddings = llm_chain_llama::embeddings::Embeddings::new_with_options(opts)?; | ||
let embedded_vecs = embeddings | ||
.embed_texts(vec![ | ||
"This is an amazing way of writing LLM-powered applications".to_string(), | ||
]) | ||
.await | ||
.unwrap(); | ||
println!("Embedded text: {:?}", embedded_vecs[0]); | ||
|
||
Ok(()) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
use crate::batch::LlamaBatch; | ||
use crate::context::ContextParams; | ||
use crate::context::LLamaContext; | ||
use crate::model::ModelParams; | ||
use crate::options::{LlamaInvocation, DEFAULT_OPTIONS}; | ||
use crate::tokenizer; | ||
use async_trait::async_trait; | ||
use futures::future::try_join_all; | ||
use llm_chain::options::{options_from_env, Opt, OptDiscriminants, Options, OptionsCascade}; | ||
use llm_chain::prompt::Data; | ||
use llm_chain::traits::EmbeddingsCreationError; | ||
use llm_chain::traits::{self, EmbeddingsError}; | ||
use std::sync::Arc; | ||
use std::{error::Error, fmt::Debug}; | ||
use tokio::sync::Mutex; | ||
|
||
/// Generate embeddings using the llama. | ||
/// | ||
/// This intended be similar to running the embedding example in llama.cpp: | ||
/// ./embedding -m <path_to_model> --log-disable -p "Hello world" 2>/dev/null | ||
/// | ||
pub struct Embeddings { | ||
context: Arc<Mutex<LLamaContext>>, | ||
options: Options, | ||
} | ||
|
||
#[async_trait] | ||
impl traits::Embeddings for Embeddings { | ||
type Error = LlamaEmbeddingsError; | ||
|
||
async fn embed_texts(&self, texts: Vec<String>) -> Result<Vec<Vec<f32>>, Self::Error> { | ||
let futures = texts.into_iter().map(|text| self.embed_query(text)); | ||
let embeddings = try_join_all(futures).await?; | ||
Ok(embeddings) | ||
} | ||
|
||
async fn embed_query(&self, query: String) -> Result<Vec<f32>, Self::Error> { | ||
let options = vec![&DEFAULT_OPTIONS, &self.options]; | ||
let invocation = | ||
LlamaInvocation::new(OptionsCascade::from_vec(options), &Data::Text(query)).unwrap(); | ||
let embeddings = self.generate_embeddings(invocation).await?; | ||
Ok(embeddings) | ||
} | ||
} | ||
|
||
#[allow(dead_code)] | ||
impl Embeddings { | ||
pub fn new_with_options(opt: Options) -> Result<Self, EmbeddingsCreationError> { | ||
//TODO(danbev) This is pretty much a duplication of the code in | ||
// llm_chain::executor::Executor::new_with_options. Find a good place | ||
// to share this code. | ||
let opts_from_env = | ||
options_from_env().map_err(|err| EmbeddingsCreationError::InnerError(err.into()))?; | ||
let cas = OptionsCascade::new() | ||
.with_options(&DEFAULT_OPTIONS) | ||
.with_options(&opts_from_env) | ||
.with_options(&opt); | ||
|
||
let Some(Opt::Model(model)) = cas.get(OptDiscriminants::Model) else { | ||
return Err(EmbeddingsCreationError::FieldRequiredError( | ||
"model_path".to_string(), | ||
)); | ||
}; | ||
|
||
let mut mp = ModelParams::new(); | ||
if let Some(Opt::NGpuLayers(value)) = cas.get(OptDiscriminants::NGpuLayers) { | ||
mp.n_gpu_layers = *value; | ||
} | ||
if let Some(Opt::MainGpu(value)) = cas.get(OptDiscriminants::MainGpu) { | ||
mp.main_gpu = *value; | ||
} | ||
if let Some(Opt::TensorSplit(values)) = cas.get(OptDiscriminants::TensorSplit) { | ||
mp.tensor_split = values.clone(); | ||
} | ||
// Currently, the setting of vocab_only is not allowed as it will cause | ||
// a crash when using the llama executor which needs to have wieghts loaded | ||
// in order to work. | ||
mp.vocab_only = false; | ||
|
||
if let Some(Opt::UseMmap(value)) = cas.get(OptDiscriminants::UseMmap) { | ||
mp.use_mmap = *value; | ||
} | ||
if let Some(Opt::UseMlock(value)) = cas.get(OptDiscriminants::UseMlock) { | ||
mp.use_mlock = *value; | ||
} | ||
|
||
let mut cp = ContextParams::new(); | ||
if let Some(Opt::NThreads(value)) = cas.get(OptDiscriminants::NThreads) { | ||
cp.n_threads = *value as u32; | ||
} | ||
|
||
if let Some(Opt::MaxContextSize(value)) = cas.get(OptDiscriminants::MaxContextSize) { | ||
cp.n_ctx = *value as u32; | ||
} | ||
|
||
if let Some(Opt::MaxBatchSize(value)) = cas.get(OptDiscriminants::MaxBatchSize) { | ||
cp.n_batch = *value as u32; | ||
} | ||
cp.embedding = true; | ||
|
||
Ok(Self { | ||
context: Arc::new(Mutex::new(LLamaContext::from_file_and_params( | ||
&model.to_path(), | ||
Some(&mp), | ||
Some(&cp), | ||
)?)), | ||
options: opt, | ||
}) | ||
} | ||
|
||
fn get_model_path(options: &Options) -> Result<String, EmbeddingsCreationError> { | ||
let opts_from_env = | ||
options_from_env().map_err(|err| EmbeddingsCreationError::InnerError(err.into()))?; | ||
let cas = OptionsCascade::new() | ||
.with_options(&DEFAULT_OPTIONS) | ||
.with_options(&opts_from_env) | ||
.with_options(&options); | ||
let model_path = cas | ||
.get(OptDiscriminants::Model) | ||
.and_then(|x| match x { | ||
Opt::Model(m) => Some(m), | ||
_ => None, | ||
}) | ||
.ok_or(EmbeddingsCreationError::FieldRequiredError( | ||
"model_path".to_string(), | ||
))?; | ||
Ok(model_path.to_path()) | ||
} | ||
|
||
async fn generate_embeddings( | ||
&self, | ||
input: LlamaInvocation, | ||
) -> Result<Vec<f32>, LlamaEmbeddingsError> { | ||
let context = self.context.clone(); | ||
let embeddings = tokio::task::spawn_blocking(move || { | ||
let context = context.blocking_lock(); | ||
let prompt_text = input.prompt.to_text(); | ||
let tokens = tokenizer::tokenize(&context, prompt_text.as_str(), true, false); | ||
//TODO(danbev) Handle the case where the number of tokens | ||
// are larger than the n_batch size. | ||
let batch = LlamaBatch::new_with_tokens(tokens.clone(), 1); | ||
let _ = context | ||
.llama_decode(&batch) | ||
.map_err(|e| LlamaEmbeddingsError::InnerError(e.into())); | ||
context.llama_get_embeddings() | ||
}); | ||
embeddings | ||
.await | ||
.map_err(|e| LlamaEmbeddingsError::InnerError(e.into())) | ||
} | ||
} | ||
|
||
#[derive(thiserror::Error, Debug)] | ||
pub enum LlamaEmbeddingsError { | ||
#[error("error when trying to generate embeddings: {0}")] | ||
InnerError(#[from] Box<dyn Error + Send + Sync>), | ||
} | ||
|
||
impl EmbeddingsError for LlamaEmbeddingsError {} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -23,6 +23,7 @@ | |
mod batch; | ||
mod context; | ||
pub mod embeddings; | ||
mod executor; | ||
mod model; | ||
mod options; | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.