Skip to content

Python Package for RFM Analysis and Customer Segmentation

License

Notifications You must be signed in to change notification settings

sonwanesuresh95/rfm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation





PyPI Latest Release PyPI Package Status License Downloads Per Month

rfm

rfm: Python Package for RFM Analysis and Customer Segmentation

Info

rfm is a Python package that provides recency, frequency, monetary analysis results for a certain transactional dataset within a snap. Its flexible structure and multiple automated functionalities provide easy and intuitive approach to RFM Analysis in an automated fashion. It aims to be a ready-made python package with high-level and quick prototyping. On practical hand, real world data is easily suited and adapted by the package. Additionally, it can make colorful, intuitive graphs using a matplotlib backend without breaking a sweat.

Installation

Dependencies

  • Python (>=3.7)
  • Pandas (>=1.2.4)
  • NumPy (>=1.20.1)
  • matplotlib (>=3.3.4)

To install the current release (Ubuntu and Windows):

$ pip install rfm

Usage

# predefine a transaction dataset as df

>>> from rfm import RFM

>>> r = RFM(df, customer_id='CustomerID', transaction_date='InvoiceDate', amount='Amount')

>>> r.plot_segment_distribution()

License

MIT

Documentation

<-- Temporarily Hosted Here -->

Initialization

Read required dataframe

>>> df = pd.read_csv('~./data.csv')

Import RFM package and start rfm analysis automatically:

>>> from rfm import RFM

>>> r = RFM(df, customer_id='CustomerID', transaction_date='InvoiceDate', amount='Amount') 

>>> r.rfm_table

If you want to do rfm analysis manually:

>>> r = RFM(df, customer_id='CustomerID', transaction_date='InvoiceDate', amount='Amount', automated=False)

Attributes

RFM.rfm_table

returns resultant rfm table df generated with recency, frequency & monetary values and scores along with segments

>>> r.rfm_table

RFM.segment_table

returns segment table df with 10 unique categories i.e. Champions, Loyal Accounts etc.

>>> r.segment_table

Methods

RFM.plot_rfm_histograms()

Plots recency, frequency and monetary histograms in a single row

>>> r.plot_rfm_histograms()

RFM.plot_rfm_order_distribution()

Plots orders by customer number

>>> r.plot_rfm_order_distribution()

RFM.plot_versace_plot(column1, column2)

Plots scatterplot of two input columns

>>> r.plot_versace_plot(column1='recency',column2='monetary_value')

>>> r.plot_versace_plot(column1='recency',column2='frequency')

>>> r.plot_versace_plot(column1='frequency',column2='monetary_value')

RFM.plot_distribution_by_segment(column, take)

Plots Distribution of input column by segment

>>> r.plot_distribution_by_segment(column='recency',take='median')

>>> r.plot_distribution_by_segment(column='frequency',take='median')

>>> r.plot_distribution_by_segment(column='monetary_value',take='median')

RFM.plot_column_distribution(column)

Plots column distribution of input column

>>> r.plot_column_distribution(column='recency')

>>> r.plot_column_distribution(column='frequency')

>>> r.plot_column_distribution(column='monetary_value')

RFM.plot_segment_distribution()

>>> r.plot_segment_distribution()

Plots Segment Distribution, i.e. Segments vs no. of customers


RFM.find_customers(segment)

returns rfm results df with input category

>>> r.find_customers('Champions')

About

Python Package for RFM Analysis and Customer Segmentation

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages