Skip to content

Commit

Permalink
Remove dependencies on stdatamodels, etc.
Browse files Browse the repository at this point in the history
  • Loading branch information
mcara committed Aug 21, 2024
1 parent f510bb6 commit eb38ce1
Showing 1 changed file with 16 additions and 170 deletions.
186 changes: 16 additions & 170 deletions jwst/resample/resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from stcal.resample import ResampleModelIO, ResampleCoAdd, ResampleSingle
from stcal.resample.utils import get_tmeasure
from drizzle.resample import Drizzle
from stdatamodels.jwst.datamodels.dqflags import pixel

Check warning on line 11 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L9-L11

Added lines #L9 - L11 were not covered by tests

from ..datamodels import ModelContainer

Check warning on line 13 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L13

Added line #L13 was not covered by tests
from ..model_blender import blendmeta
Expand Down Expand Up @@ -58,6 +59,7 @@ def new_model(self, image_shape=None, file_name=None):
class ResampleJWSTCoAdd(ResampleJWSTModelIO, ResampleCoAdd):

Check warning on line 59 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L59

Added line #L59 was not covered by tests
# resample_array_names = [
# {'attr': 'data', 'variance', 'exptime']
dq_flag_name_map = pixel
def __init__(self, *args, blendheaders=True, **kwargs):
super().__init__(*args, **kwargs)
self._blendheaders = blendheaders

Check warning on line 65 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L62-L65

Added lines #L62 - L65 were not covered by tests
Expand Down Expand Up @@ -107,177 +109,10 @@ def _check_var_array(self, data_model, array_name):
return False
return True

Check warning on line 110 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L109-L110

Added lines #L109 - L110 were not covered by tests

def extra_pre_resample_setup(self):
self._var_rnoise_sum = np.full(self._output_array_shape, np.nan)
self._var_poisson_sum = np.full(self._output_array_shape, np.nan)
self._var_flat_sum = np.full(self._output_array_shape, np.nan)
# self._total_weight_var_rnoise = np.zeros(self._output_array_shape)
self._total_weight_var_poisson = np.zeros(self._output_array_shape)
self._total_weight_var_flat = np.zeros(self._output_array_shape)

def post_process_resample_model(self, data_model, driz_init_kwargs, add_image_kwargs):
log.info("Resampling variance components")

# create resample objects for the three variance arrays:
driz_init_kwargs = {
'kernel': self.kernel,
'fillval': np.nan,
'out_shape': self._output_array_shape,
# 'exptime': 1.0,
'no_ctx': True,
}
driz_rnoise = Drizzle(**driz_init_kwargs)
driz_poisson = Drizzle(**driz_init_kwargs)
driz_flat = Drizzle(**driz_init_kwargs)

# Resample read-out noise and compute weight map for variance arrays
if self._check_var_array(data_model, 'var_rnoise'):
data = np.sqrt(data_model.var_rnoise)
driz_rnoise.add_image(data, **add_image_kwargs)
var = driz_rnoise.out_img
np.square(var, out=var)

weight_mask = var > 0

# Set the weight for the image from the weight type
if self.weight_type == "ivm":
weight_mask = var > 0
weight = np.ones(self._output_array_shape)
weight[weight_mask] = np.reciprocal(var[weight_mask])
weight_mask &= (weight > 0.0)
# Add the inverse of the resampled variance to a running sum.
# Update only pixels (in the running sum) with valid new values:
self._var_rnoise_sum[weight_mask] = np.nansum(
[
self._var_rnoise_sum[weight_mask],
weight[weight_mask]
],
axis=0
)
elif self.weight_type == "exptime":
weight = np.full(
self._output_array_shape,
get_tmeasure(data_model)[0],
)
weight_mask = np.ones(self._output_array_shape, dtype=bool)
self._var_rnoise_sum = np.nansum(
[self._var_rnoise_sum, weight],
axis=0
)
else:
weight = np.ones(self._output_array_shape)
weight_mask = np.ones(self._output_array_shape, dtype=bool)
self._var_rnoise_sum = np.nansum(
[self._var_rnoise_sum, weight],
axis=0
)
else:
weight = np.ones(self._output_array_shape)
weight_mask = np.ones(self._output_array_shape, dtype=bool)

if self._check_var_array(data_model, 'var_poisson'):
data = np.sqrt(data_model.var_poisson)
driz_poisson.add_image(data, **add_image_kwargs)
var = driz_poisson.out_img
np.square(var, out=var)

mask = (var > 0) & weight_mask

# Add the inverse of the resampled variance to a running sum.
# Update only pixels (in the running sum) with valid new values:
self._var_poisson_sum[mask] = np.nansum(
[
self._var_poisson_sum[mask],
var[mask] * weight[mask] * weight[mask]
],
axis=0
)
self._total_weight_var_poisson[mask] += weight[mask]

if self._check_var_array(data_model, 'var_flat'):
data = np.sqrt(data_model.var_flat)
driz_flat.add_image(data, **add_image_kwargs)
var = driz_flat.out_img
np.square(var, out=var)

mask = (var > 0) & weight_mask

# Add the inverse of the resampled variance to a running sum.
# Update only pixels (in the running sum) with valid new values:
self._var_flat_sum[mask] = np.nansum(
[
self._var_flat_sum[mask],
var[mask] * weight[mask] * weight[mask]
],
axis=0
)
self._total_weight_var_flat[mask] += weight[mask]

def finalize_resample(self):
# We now have a sum of the weighted resampled variances.
# Divide by the total weights, squared, and set in the output model.
# Zero weight and missing values are NaN in the output.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "invalid value*", RuntimeWarning)
warnings.filterwarnings("ignore", "divide by zero*", RuntimeWarning)

odt = self._output_model.data.dtype

# readout noise
np.reciprocal(self._var_rnoise_sum, out=self._var_rnoise_sum)
self._output_model.var_rnoise = self._var_rnoise_sum.astype(dtype=odt)

# Poisson noise
for _ in range(2):
np.divide(
self._var_poisson_sum,
self._total_weight_var_poisson,
out=self._var_poisson_sum
)
self._output_model.var_poisson = self._var_poisson_sum.astype(dtype=odt)

# flat's noise
for _ in range(2):
np.divide(
self._var_flat_sum,
self._total_weight_var_flat,
out=self._var_flat_sum
)
self._output_model.var_flat = self._var_flat_sum.astype(dtype=odt)

# compute total error:
vars = np.array(
[
self._var_rnoise_sum,
self._var_poisson_sum,
self._var_flat_sum,
]
)
all_nan_mask = np.any(np.isnan(vars), axis=0)
self._output_model.err = np.sqrt(np.nansum(vars, axis=0)).astype(dtype=odt)
self._output_model.err[all_nan_mask] = np.nan

del vars
del self._var_rnoise_sum
del self._var_poisson_sum
del self._var_flat_sum
# del self._total_weight_var_rnoise
del self._total_weight_var_poisson
del self._total_weight_var_flat

# update meta for the output model:
self._output_model.meta.cal_step.resample = 'COMPLETE'
_update_fits_wcsinfo(self._output_model)
util.update_s_region_imaging(self._output_model)
self._output_model.meta.asn.pool_name = self._input_models.asn_pool_name
self._output_model.meta.asn.table_name = self._input_models.asn_table_name
self._output_model.meta.resample.pixel_scale_ratio = self._pixel_scale_ratio
self._output_model.meta.resample.pixfrac = self.pixfrac

# TODO: Not sure about funct. signature and also I don't like it needs
# to open input files again. Should we store meta of all inputs?
# Should blendmeta.blendmodels be redesigned to blend one meta at a time?
def blend_output_metadata(self, output_model):
def blend_output_metadata(self):

Check warning on line 115 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L115

Added line #L115 was not covered by tests
""" Create new output metadata based on blending all input metadata. """

if not self._blendheaders:
Expand All @@ -290,15 +125,26 @@ def blend_output_metadata(self, output_model):

log.info(f'Blending metadata for {self._output_filename}')
blendmeta.blendmodels(

Check warning on line 127 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L126-L127

Added lines #L126 - L127 were not covered by tests
output_model,
self._output_model,
inputs=self._input_models,
output=self._output_filename,
ignore=ignore_list
)

def final_post_processing(self):

Check warning on line 134 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L134

Added line #L134 was not covered by tests
# update meta for the output model:
self._output_model.meta.cal_step.resample = 'COMPLETE'
_update_fits_wcsinfo(self._output_model)
util.update_s_region_imaging(self._output_model)
self._output_model.meta.asn.pool_name = self._input_models.asn_pool_name
self._output_model.meta.asn.table_name = self._input_models.asn_table_name
self._output_model.meta.resample.pixel_scale_ratio = self._pixel_scale_ratio
self._output_model.meta.resample.pixfrac = self.pixfrac
self.blend_output_metadata()

Check warning on line 143 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L136-L143

Added lines #L136 - L143 were not covered by tests


class ResampleJWSTSingle(ResampleJWSTModelIO, ResampleSingle):
pass
dq_flag_name_map = pixel

Check warning on line 147 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L146-L147

Added lines #L146 - L147 were not covered by tests


def _update_fits_wcsinfo(model):

Check warning on line 150 in jwst/resample/resample.py

View check run for this annotation

Codecov / codecov/patch

jwst/resample/resample.py#L150

Added line #L150 was not covered by tests
Expand Down

0 comments on commit eb38ce1

Please sign in to comment.