Han Guo, Ramakanth Pasunuru, and Mohit Bansal. NAACL 2019 pdf
- The project originally runs in Tensorflow 1.8, but should be compatible for future versions (except TF 2.0).
- Python 3.5
- See
requirements.txt
Download the data from GLUE, and follow the pre-processing from authors. A copy of the download script is provided in this repo.
python download_glue_data.py --data_dir glue_data --tasks all
To compute the ELMo representations, use either TF-Hub or AllenNLP.
elmo = hub.Module("https://tfhub.dev/google/elmo/2", trainable=True) embeddings = elmo(..., as_dict=True)["elmo"]
AllenNLP's website includes a very detailed tutorial.
python run_MTL.py --logdir [logdir] --tasks [tasks] --embedding_dim [embedding_dim] --num_units [num_units] --num_layers [num_layers] --dropout_rate [dropout_rate] --learning_rate [learning_rate] --stage [stage]
python run_MTL.py --logdir [logdir] --tasks [tasks] --embedding_dim [embedding_dim] --num_units [num_units] --num_layers [num_layers] --dropout_rate [dropout_rate] --learning_rate [learning_rate] --stage [stage]
Pre-trained Models: append the ckpt_file argument to the command line arguments.
@inproceedings{guo2019autosem,
title={AutoSeM: Automatic Task Selection and Mixing in Multi-Task Learning},
author={Han Guo and Ramakanth Pasunuru and Mohit Bansal},
booktitle={Proc. of NAACL},
year={2019}
}