Skip to content

spdj2271/DEKM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Deep Embedded K-means Clustering

Paper

Usage

  1. Clone the code locally.
git clone https://github.com/spdj2271/DEKM.git DEKM
  1. Launch an experiment on MNIST dataset.
cd DEKM
python DEKM.py MNIST
  1. Launch an experiment on other dataset, e.g., 'USPS', 'COIL20', 'FRGC'.
python DEKM.py USPS
  • All datasets can be downloaded here.
  • When launch experiments on other datasets (except 'MNIST'), you should make sure you have the following folder structure:
|-- undefined
    |-- DEKM.py
    |-- DEKM_dense.py
    |-- utils.py
    |-- datasets
    |   |-- 20NEWS
    |   |   |-- test_data.npz
    |   |   |-- test_label.npz
    |   |   |-- train_data.npz
    |   |   |-- train_label.npz
    |   |-- COIL20
    |   |   |-- COIL20.h5
    |   |-- FRGC
    |   |   |-- FRGC.h5
    |   |-- RCV1
    |   |   |-- test
    |   |   |-- validation
    |   |-- REUTERS
    |   |   |-- 10k_feature.npy
    |   |   |-- 10k_target.npy
    |   |-- USPS
    |       |-- USPS.h5

Result

Average results of three runs:

image (Conv) dataset ACC NMI text (Dense) dataset ACC NMI
MNIST 95.75 91.06 REUTES-10K 76.28 59.06
USPS 79.75 82.23 20NEWS 41.08 40.28
COIL-20 69.03 80.06 RCV1-10K 67.15 46.18
FRGC 38.59 50.78

Dependencies

tensorflow 2.4.1

scikit-learn 0.23.2

numpy 1.19.5

scipy 1.2.1

Citations

If you find our project helpful, your citations are highly appreciated:

@inproceedings{guo2021deep,
  title={Deep Embedded K-Means Clustering},
  author={Guo, Wengang and Lin, Kaiyan and Ye, Wei},
  booktitle={2021 International Conference on Data Mining Workshops (ICDMW)},
  pages={686--694},
  year={2021},
  organization={IEEE}
}

About

Deep Embedded K-means Clustering (DEKM)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages