- Clone the code locally.
git clone https://github.com/spdj2271/DEKM.git DEKM
- Launch an experiment on MNIST dataset.
cd DEKM
python DEKM.py MNIST
- Launch an experiment on other dataset, e.g., 'USPS', 'COIL20', 'FRGC'.
python DEKM.py USPS
- All datasets can be downloaded here.
- When launch experiments on other datasets (except 'MNIST'), you should make sure you have the following folder structure:
|-- undefined
|-- DEKM.py
|-- DEKM_dense.py
|-- utils.py
|-- datasets
| |-- 20NEWS
| | |-- test_data.npz
| | |-- test_label.npz
| | |-- train_data.npz
| | |-- train_label.npz
| |-- COIL20
| | |-- COIL20.h5
| |-- FRGC
| | |-- FRGC.h5
| |-- RCV1
| | |-- test
| | |-- validation
| |-- REUTERS
| | |-- 10k_feature.npy
| | |-- 10k_target.npy
| |-- USPS
| |-- USPS.h5
Average results of three runs:
image (Conv) dataset | ACC | NMI | text (Dense) dataset | ACC | NMI |
---|---|---|---|---|---|
MNIST | 95.75 | 91.06 | REUTES-10K | 76.28 | 59.06 |
USPS | 79.75 | 82.23 | 20NEWS | 41.08 | 40.28 |
COIL-20 | 69.03 | 80.06 | RCV1-10K | 67.15 | 46.18 |
FRGC | 38.59 | 50.78 |
tensorflow 2.4.1
scikit-learn 0.23.2
numpy 1.19.5
scipy 1.2.1
If you find our project helpful, your citations are highly appreciated:
@inproceedings{guo2021deep,
title={Deep Embedded K-Means Clustering},
author={Guo, Wengang and Lin, Kaiyan and Ye, Wei},
booktitle={2021 International Conference on Data Mining Workshops (ICDMW)},
pages={686--694},
year={2021},
organization={IEEE}
}