Skip to content

CLIReval is an open-source toolkit that evaluates the quality of MT outputs in the context of a CLIR system, without the need for any actual CLIR dataset.

License

Notifications You must be signed in to change notification settings

ssun32/CLIReval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CLIReval

CLIReval is an open-source toolkit that evaluates the quality of MT outputs in the context of a CLIR system, without the need for any actual CLIR dataset. The only inputs required to the tool are the translations and the references. The tool will create a synthetic CLIR dataset, index the translations as documents, and report metrics such as mean average precision.

Dependencies

Usage

usage: evaluate.py [-h] 
				   [--doc_mapping_file DOC_MAPPING_FILE]
				   [--doc_length DOC_LENGTH]
				   [--port PORT] 
				   [--query_mode {sentences,unique_terms}]
                   [--relv_mode {jenks,percentile,query_in_document}]
                   [--jenks_nb_class JENKS_NB_CLASS]
                   [--n_percentile N_PERCENTILE] 
                   [--n_ret N_RET]
                   [--qrel_save_path QREL_SAVE_PATH]
                   [--res_save_path RES_SAVE_PATH]
                   [--target_langcode]
                   [--output_format {tsv,json}]
                   [--output_file OUTPUT_FILE]
                   ref_file mt_file
            Option             Default Description
ref_file A file containing reference sentences/documents.
mt_file A file containing translated sentences/documents.
--doc_mapping_file None A TSV file which maps sentences in ref_file and mt_file to doc_ids and seg_ids.
--doc_length 1 When document boundary is not defined, use this argument to specific the number of sentences in every document. This argument will only be used when input files are raw text files and --doc_mapping_file is not specified.
--port 9200 The Elasticsearch port number of a running Elasticsearch instance.
--query_mode sentences {sentences,unique_terms}
--relv_mode jenks {jenks,percentile,query_in_document}
--jenks_nb_class 5 Number of classes when using jenks mode for relevance label converter.
--n_percentile 25 The threshold percentile when using percentile mode for relevance label convertor. Only documents with BM25 scores in the top n_percentile are considered relevant documents.
--n_ret 100 Maximum number of documents to be returned by Elasticsearch.
--qrel_save_path None When specified, CLIReval will save trec_eval's query relevance judgments (qrel) file to qrel_save_path.
--res_save_path None When specified, CLIReval will save trec_eval's results (res) file to res_save_path.
--target_langcode en Language code of the target sentences/documents. CLIReval has built-in analyzers for the following language codes: ar, bg, bn, ca, cs, da, de, el, en, es, eu, fa, fi, fr, ga, gl, hi, hu, hy, id, it, ja, ko, lt, lv, nl, no, pl, pt, ro, ru, sv, th, tr, uk, zh. CLIReval will use standard analyzer for language codes not in the list.
--output_format json json or csv.
--output_file None By default, CLIReval writes output to STDOUT. If --output_file is specified, CLIReval will output to file instead.

Starting and stopping Elasticsearch

We provide a convenient script that starts an Elasticsearch instance on port 9200 and set Java heap size to 5GB: ./scripts/server.sh [start | stop]

Example runs

Evaluating with defined document boundaries:

  • python evaluate.py examples/en-de.ref.sgm examples/en-de.mt.sgm
  • python evaluate.py examples/en-de.ref.txt examples/en-de.mt.txt --doc_mapping_file examples/en-de.doc_mappings.tsv Evaluating with artificial document boundary: *python evaluate.py examples/en-de.ref.txt examples/en-de.mt.txt --doc_length 10 (1 sentence per document) *python evaluate.py examples/en-de.ref.txt examples/en-de.mt.txt --doc_length 10 (10 sentence per documents)

We also provide a sample bash script example/evaluate.sh which runs the entire pipeline: 1) start an Elasticsearch instance, 2) run evaluation 3) shut down Elasticsearch. A sample output in example/output.txt.

Please refer to trec_eval documentation for explanation of the output.

Installation

  • Install python dependencies pip install -r requirements.txt
  • Install external tools (elasticsearch and trec_eval) bash scripts/install_external_tools.sh

Reference

[1] Shuo Sun, Suzanna Sia, Kevin Duh, CLIReval: Evaluating Machine Translation as a Cross-Lingual Information Retrieval Task, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020

About

CLIReval is an open-source toolkit that evaluates the quality of MT outputs in the context of a CLIR system, without the need for any actual CLIR dataset.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published