Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add C ndarray interface and refactor implementation for stats/base/dstdevyc #4628

Merged
merged 7 commits into from
Jan 8, 2025
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
166 changes: 135 additions & 31 deletions lib/node_modules/@stdlib/stats/base/dstdevyc/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,17 +98,16 @@ The use of the term `n-1` is commonly referred to as Bessel's correction. Note,
var dstdevyc = require( '@stdlib/stats/base/dstdevyc' );
```

#### dstdevyc( N, correction, x, stride )
#### dstdevyc( N, correction, x, strideX )

Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array `x` using a one-pass algorithm proposed by Youngs and Cramer.

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dstdevyc( N, 1, x, 1 );
var v = dstdevyc( x.length, 1.0, x, 1 );
// returns ~2.0817
```

Expand All @@ -117,18 +116,16 @@ The function has the following parameters:
- **N**: number of indexed elements.
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`,
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`,

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );

var v = dstdevyc( N, 1, x, 2 );
var v = dstdevyc( 4, 1.0, x, 2 );
// returns 2.5
```

Expand All @@ -138,45 +135,39 @@ Note that indexing is relative to the first index. To introduce an offset, use [

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dstdevyc( N, 1, x1, 2 );
var v = dstdevyc( 4, 1.0, x1, 2 );
// returns 2.5
```

#### dstdevyc.ndarray( N, correction, x, stride, offset )
#### dstdevyc.ndarray( N, correction, x, strideX, offsetX )

Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics.

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dstdevyc.ndarray( N, 1, x, 1, 0 );
var v = dstdevyc.ndarray( x.length, 1.0, x, 1, 0 );
// returns ~2.0817
```

The function has the following additional parameters:

- **offset**: starting index for `x`.
- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other element in `x` starting from the second element

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = dstdevyc.ndarray( N, 1, x, 2, 1 );
var v = dstdevyc.ndarray( 4, 1.0, x, 2, 1 );
// returns 2.5
```

Expand All @@ -202,28 +193,141 @@ var v = dstdevyc.ndarray( N, 1, x, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dstdevyc = require( '@stdlib/stats/base/dstdevyc' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );

var v = dstdevyc( x.length, 1, x, 1 );
var v = dstdevyc( x.length, 1.0, x, 1 );
console.log( v );
```

</section>

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/dstdevyc.h"
```

#### stdlib_strided_dstdevyc( N, correction, \*X, strideX )

Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.

```c
const double x[] = { 1.0, -2.0, 2.0 };

double v = stdlib_strided_dstdevyc( 3, 1.0, x, 1 );
// returns ~2.0817
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.

```c
double stdlib_strided_dstdevyc( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX );
```

#### stdlib_strided_dstdevyc_ndarray( N, correction, \*X, strideX, offsetX )

Computes the [standard deviation][standard-deviation] of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics.

```c
const double x[] = { 1.0, -2.0, 2.0 };

double v = stdlib_strided_dstdevyc_ndarray( 3, 1.0, x, 1, 0 );
// returns ~2.0817
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.

```c
double stdlib_strided_dstdevyc_ndarray( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/dstdevyc.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

// Specify the number of elements:
const int N = 4;

// Specify the stride length:
const int strideX = 2;

// Compute the variance:
double v = stdlib_strided_dstdevyc( N, 1.0, x, strideX );

// Print the result:
printf( "sample standard deviation: %lf\n", v );
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

* * *

<section class="references">
Expand Down
20 changes: 10 additions & 10 deletions lib/node_modules/@stdlib/stats/base/dstdevyc/benchmark/benchmark.js
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,20 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var pkg = require( './../package.json' ).name;
var dstdevyc = require( './../lib/dstdevyc.js' );


// VARIABLES //

var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
Expand All @@ -39,13 +45,7 @@ var dstdevyc = require( './../lib/dstdevyc.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand All @@ -54,7 +54,7 @@ function createBenchmark( len ) {

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = dstdevyc( x.length, 1, x, 1 );
v = dstdevyc( x.length, 1.0, x, 1 );
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,9 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var tryRequire = require( '@stdlib/utils/try-require' );
var pkg = require( './../package.json' ).name;

Expand All @@ -36,6 +35,9 @@ var dstdevyc = tryRequire( resolve( __dirname, './../lib/dstdevyc.native.js' ) )
var opts = {
'skip': ( dstdevyc instanceof Error )
};
var options = {
'dtype': 'float64'
};


// FUNCTIONS //
Expand All @@ -48,13 +50,7 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand All @@ -63,7 +59,7 @@ function createBenchmark( len ) {

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = dstdevyc( x.length, 1, x, 1 );
v = dstdevyc( x.length, 1.0, x, 1 );
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,20 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float64Array = require( '@stdlib/array/float64' );
var pkg = require( './../package.json' ).name;
var dstdevyc = require( './../lib/ndarray.js' );


// VARIABLES //

var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
Expand All @@ -39,13 +45,7 @@ var dstdevyc = require( './../lib/ndarray.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand All @@ -54,7 +54,7 @@ function createBenchmark( len ) {

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = dstdevyc( x.length, 1, x, 1, 0 );
v = dstdevyc( x.length, 1.0, x, 1, 0 );
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
Expand Down
Loading
Loading