Skip to content

Commit

Permalink
Q4_1 quantization compiling to vmfb megacommit (#2)
Browse files Browse the repository at this point in the history
  • Loading branch information
Max191 authored Feb 23, 2024
1 parent 94905c3 commit e2189c7
Show file tree
Hide file tree
Showing 8 changed files with 587 additions and 81 deletions.
201 changes: 162 additions & 39 deletions python/turbine_llamacpp/compile.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,90 +9,150 @@


import argparse

parser = argparse.ArgumentParser()
parser.add_argument(
"--gguf_path",
type=str,
default="ggml-model-q8_0.gguf",
help="path to gguf",
)
parser.add_argument(
"--irpa_path",
type=str,
default=None,
help="path to a .irpa file to generate new repacked parameters.",
)
parser.add_argument(
"--compile_to", default="torch", type=str, help="torch, linalg, vmfb"
)
parser.add_argument(
"--vmfb_path", type=str, default=None, help="Path/name to store compiled vmfb."
)
parser.add_argument("--device", type=str, default="llvm-cpu", help="llvm-cpu")
parser.add_argument(
"--quantization",
type=str,
default="",
help="Comma separated list of quantization types. Supported types are [Q4_1].",
)


def create_direct_predict_internal_kv_module(model: LlamaCPP) -> CompiledModule:
def create_direct_predict_internal_kv_module(
hp: HParams,
compile_to=None,
device=None,
vmfb_path=None,
quantization=None,
irpa_path=None,
):
"""This compilation performs direct, non-sampled prediction.
It manages its kv cache and step states internally.
It manages its kv kv_cache and step states internally.
"""

quant_types = quantization.split(",")
if irpa_path:
import iree.runtime as rt

dequantize_types = [
type
for type in [
"F32",
"F16",
"Q4_0",
"Q4_1",
"Q5_0",
"Q5_1",
"Q8_0",
"Q8_1",
"Q2_K",
"Q3_K",
"Q4_K",
"Q5_K",
"Q6_K",
"Q8_K",
]
if type not in quant_types
]
# We can't match on this param yet for the quantization rewrite.
dequantize_params = [
"token_embd.weight",
]
repacked_params = hp.repack_tensor_params(
dequantize_types=dequantize_types,
dequantize_params=dequantize_params,
dtype=torch.float32,
)
rt.save_archive_file(repacked_params, irpa_path)
print(f"saved repacked parameters to {irpa_path}")

# Replace tensor params for tracing with dequantized types for any type not
# listed in args.quantization
replaceable_types = [type for type in hp.supported_types if type not in quant_types]
# Replace Q4_1 tensors because of a rewrite trick for Q4_1 parameters
if "Q4_1" in quant_types:
replaceable_types.append("Q4_1")
hp.replace_quantized_tensors(replaceable_types=replaceable_types)
model = LlamaCPP(hp)

class LlamaDpisModule(CompiledModule):
params = export_parameters(
model.theta.params,
external=True,
name_mapper=lambda n: n.removeprefix("params."),
)
current_seq_index = export_global(AbstractIndex, mutable=True)
cache_k = export_global(
model.cache_k, name="cache_k", uninitialized=True, mutable=True
)
cache_v = export_global(
model.cache_v, name="cache_v", uninitialized=True, mutable=True
)
kv_cache = export_global_tree(model.kv_cache, uninitialized=True, mutable=True)

def run_initialize(
self, input_ids=AbstractTensor(model.hp.bs, None, dtype=torch.int32)
self, input_ids=AbstractTensor(model.hp.bs, None, dtype=torch.int64)
):
output_token, cache_k, cache_v = self._initialize(
output_token, *kv_cache = self._initialize(
input_ids,
cache_k=self.cache_k,
cache_v=self.cache_v,
*self.kv_cache,
constraints=[
input_ids.dynamic_dim(1) <= model.max_seqlen,
],
)
self.current_seq_index = IREE.tensor_dim(input_ids, 1)
self.cache_k = cache_k
self.cache_v = cache_v
self.kv_cache = kv_cache
return output_token

def run_forward(self, token0=AbstractTensor(1, 1, dtype=torch.int32)):
def run_forward(self, token0=AbstractTensor(1, 1, dtype=torch.int64)):
seq_index_0 = self.current_seq_index
# TODO: Torch currently has poor support for passing symints across
# the tracing boundary, so we box it in a tensor and unbox it on the
# inside. Once this restriction is relaxes, just pass it straight through.
seq_index_0_tensor = IREE.tensor_splat(value=seq_index_0, dtype=torch.int32)
output_token, cache_k, cache_v = self._decode_step(
token0, seq_index_0_tensor, self.cache_k, self.cache_v
seq_index_0_tensor = IREE.tensor_splat(value=seq_index_0, dtype=torch.int64)
output_token, *kv_cache = self._decode_step(
token0, seq_index_0_tensor, *self.kv_cache
)
# TODO: Emit an assertion of some kind of overflowing max_seqlen.
self.current_seq_index = seq_index_0 + 1
self.cache_k = cache_k
self.cache_v = cache_v
self.kv_cache = kv_cache
return output_token

@jittable
def _initialize(
input_ids: torch.Tensor, cache_k: torch.Tensor, cache_v: torch.Tensor
):
def _initialize(input_ids: torch.Tensor, *kv_cache):
return (
model.forward(
input_ids,
0,
local_cache_k=cache_k,
local_cache_v=cache_v,
local_kv_cache=kv_cache,
),
cache_k,
cache_v,
*kv_cache,
)

@jittable
def _decode_step(
token0: torch.Tensor,
index0: torch.Tensor,
cache_k: torch.Tensor,
cache_v: torch.Tensor,
*kv_cache,
):
bs, sl_input = token0.shape
_, _, sl_k, *_ = cache_k.shape
_, _, sl_v, *_ = cache_v.shape
_, sl_k, *_ = kv_cache[0].shape
_, sl_v, *_ = kv_cache[0].shape
index0_scalar = index0.item()
# Torch is very picky that on the auto-regressive steps it knows
# that the index0_scalar value (which is used to slice the caches)
Expand All @@ -107,23 +167,86 @@ def _decode_step(
model.forward(
token0,
index0_scalar,
local_cache_k=cache_k,
local_cache_v=cache_v,
local_kv_cache=kv_cache,
),
cache_k,
cache_v,
*kv_cache,
)

return LlamaDpisModule(import_to="import")
import_to = "INPUT" if compile_to == "linalg" else "IMPORT"
inst = LlamaDpisModule(import_to=import_to)

quantized_param_names = get_quantized_param_name_dict(hp, quant_types)
# Only supporting rewrite for Q4_1 params right now.
if "Q4_1" in quantized_param_names and not compile_to == "linalg":
from shark_turbine.transforms.quantization import mm_group_quant

mm_group_quant.MMGroupQuantRewriterPass(
CompiledModule.get_mlir_module(inst).operation,
group_size=32,
param_names=quantized_param_names["Q4_1"],
).run()
module_str = str(CompiledModule.get_mlir_module(inst))
if compile_to != "vmfb":
return module_str
else:
flags = [
"--iree-input-type=torch",
"--mlir-print-debuginfo",
"--mlir-print-op-on-diagnostic=false",
"--iree-stream-resource-index-bits=64",
"--iree-vm-target-index-bits=64",
]
if device == "cpu" or device == "llvm-cpu":
flags.extend(
[
"--iree-llvmcpu-target-cpu-features=host",
"--iree-llvmcpu-target-triple=x86_64-linux-gnu",
"--iree-llvmcpu-enable-ukernels=all",
]
)
device = "llvm-cpu"
else:
print("Unknown device kind: ", device)
import iree.compiler as ireec

flatbuffer_blob = ireec.compile_str(
module_str,
target_backends=[device],
extra_args=flags,
)
if vmfb_path is None:
vmfb_path = f"output.vmfb"
with open(vmfb_path, "wb+") as f:
f.write(flatbuffer_blob)
print("saved to output.vmfb")
return module_str


def get_quantized_param_name_dict(hp: HParams, allowed_quant_types: list[str]):
quantized_param_names = {}
for tensor_name, quant_type in hp.replaced_quantized_tensors:
if quant_type in allowed_quant_types:
if quant_type in quantized_param_names:
quantized_param_names[quant_type].add(tensor_name)
else:
quantized_param_names[quant_type] = set([tensor_name])
return quantized_param_names


def main():
args = parser.parse_args()
hp = HParams(args.gguf_path)
model = LlamaCPP(hp)
cm = create_direct_predict_internal_kv_module(model)
module_str = create_direct_predict_internal_kv_module(
hp,
args.compile_to,
args.device,
args.vmfb_path,
args.quantization,
args.irpa_path,
)
with open(f"output.mlir", "w+") as f:
f.write(str(CompiledModule.get_mlir_module(cm)))
f.write(module_str)
print("saved to output.mlir")


if __name__ == "__main__":
Expand Down
Loading

0 comments on commit e2189c7

Please sign in to comment.