Skip to content

super233/Semantic-Segmentation-of-Pathological-Images

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic Segmentation of Pathological Images

中文

Implemented by Pytorch, it can also be a tutorial of semantic segmentation.

If you like it, please star me. 😄

Datasets

There are some datasets from kaggle and other websites.

Models

  • UNet
  • UNet++
  • Attention UNet
  • R2U-Net
  • Attention R2U-Net
  • NFNPlus
  • XNet

Requirements

  • Pytorch 1.4.0
  • Torchvision 0.5.0
  • Python 3.7
  • Some other libraries (find what you miss when running the code :-P)

Preparations

  • After downloading datasets, generate the train.json and val.json for each dataset with the following format:
[
    {
        "image_path": "/home/tangwenqi/workspace/data/small_g4/coco_train/JPEGImages/20180550-PASM.jpg",
        "mask_path": "/home/tangwenqi/workspace/data/small_g4/coco_train/Labels/20180550-PASM.png"
    },
    {
        "image_path": "/home/tangwenqi/workspace/data/small_g4/coco_train/JPEGImages/20180620-PASM.jpg",
        "mask_path": "/home/tangwenqi/workspace/data/small_g4/coco_train/Labels/20180620-PASM.png"
    },
]
  • For each dataset, modify its absolute path in corresponding class.

Usages

run train.py with some required and optional parameters, for more details please look train.py.

About

病理图像分割,Semantic Segmentation of Pathological Images

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages