Skip to content

A Fair and Scalable Time Series Forecasting Benchmark and Toolkit.

License

Notifications You must be signed in to change notification settings

superarthurlx/MTSFV1

 
 

Repository files navigation

The environment and data required to reproduce the experimental results in the paper can be referenced from BasicTS https://github.com/GestaltCogTeam/BasicTS Once ready, execute the following command:

python experiments/train.py -c baselines/STHG/PEMS03.py -g 0 
python experiments/train.py -c baselines/STHG/PEMS04.py -g 0 
python experiments/train.py -c baselines/STHG/PEMS07.py -g 0 
python experiments/train.py -c baselines/STHG/PEMS08.py -g 0
python experiments/train.py -c baselines/STHG/SD.py -g 0
python experiments/train.py -c baselines/STHG/GBA.py -g 0 
python experiments/train.py -c baselines/STHG/GLA.py -g 0  
python experiments/train.py -c baselines/STHG/CA.py -g 0  

About

A Fair and Scalable Time Series Forecasting Benchmark and Toolkit.

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 78.8%
  • Jupyter Notebook 21.1%
  • Shell 0.1%