This is the main/production branch (DO NOT PUSH DIRECTLY TO RELEASE)
This is the developpement branch (DO NOT PUSH DIRECTLY TO DEV)
These are the branches where you can develop new features for the project. In order to create a feature branch:
- Make sure that your dev branch is up to date
git checkout dev git pull dev
- Create a new branch from dev with the name feature/name_of_your_feature
git checkout -b feature/name_of_your_feature
- Once your feature developpement is complete, make a Pull Request of your feature branch to dev
These are branches made for research purposes and they are named research/name_of_your_subject
Follow these steps in that order exactly:
git clone https://github.com/surfriderfoundationeurope/surfnet.git <folder-for-surfnet> -b release
cd <folder-for-surfnet>
pip install poetry
Here we use python version 3.9
poetry env use 3.9
poetry install
pre-commits have been added to format and check the linting of the code before any commit. This process will run:
- PyUpgrade: to make sure that the code syntax is up to date with the latest python versions
- Black: which is a code formatter
- Flake8: to check that the code is properly formatted.
All this process is automatic to ensure the commited code quality. So as a good measure, prior to committing any code it is highly recommended to run:
poetry run black path/to/the/changed/code/directory(ies)
This will format the code that has been written and:
poetry run flake8 path/to/the/changed/code/directory(ies)
to check if there is any other issues to fix.
You can download MobileNetV3 model with the following script:
cd models
sh download_pretrained_base.sh
The file will be downloaded into models.
If you want to download the 3 test videos on the 3 portions of the Auterrive riverbank, run:
cd data
sh download_validation_videos.sh
This will download the 3 videos in distinct folders of data/validation_videos.
Setting up the server and testing: from surfnet/ directory, you may run a local flask developement server with the following command:
export FLASK_APP=src/plasticorigins/serving/app.py
poetry run flask run
Setting up the server and testing: from surfnet/ directory, you may run a local wsgi gunicorn production server with the following command:
PYTHONPATH=./src gunicorn -w 5 --threads 2 --bind 0.0.0.0:8001 --chdir ./src/serving/ wsgi:app
Then, in order to test your local dev server, you may run:
curl -X POST http://127.0.0.1:5000/ -F 'file=@/path/to/video.mp4' # flask
Change port 5000 to 8001 to test on gunicorn or 8000 to test with Docker and gunicorn.
You can build and run the surfnet AI API within a Docker container.
Docker Build:
docker build -t surfnet/surfnet:latest .
Docker Run:
docker run --env PYTHONPATH=/src -p 8000:8000 --name surfnetapi surfnet/surfnet:latest
You can use the makefile for convenience purpose to launch the surfnet API:
make surfnet-dev-local # with flask
make surfnet-prod-local # with gunicorn
make surfnet-prod-build-docker # docker build
make surfnet-prod-run-docker # docker run
To ease production operation, the surfnet API can be deployed on top of kubernetes (k8s) cluster. A pre-built Docker image is available on ghcr.io to be deployed using the surfnet.yaml k8s deployment file. To do so, change directory to k8s/, then once you are connected to your k8s cluster simply enter:
kubectl apply -y surfnet.yaml
Remark: we use a specific surfnet k8s node pool label for our Azure production environment on aks. If you want to test deployment on a default k8s cluster using system nodes, you have either to use default surfnet.yaml file or remove the nodeSelector section from others deployment files (aks, gke).
After the deployment is done, create a service to expose the surfnet API to be publicly accessible over the Internet.
kubectl expose deployment surfnet --type=LoadBalancer --name=surfnet-api
kubectl get service surfnet-api
Check the current version of the product:
Docker Build:
poetry version
Bump the version to the product:
poetry version <bump-rule>
bump rules can be found in : https://python-poetry.org/docs/cli/#:~:text=with%20concrete%20examples.-,RULE,-BEFORE choose carefully the one that corresponds to your bump: for the prerelease we will use:
- prepatch
- preminor
- premajor
make sure that in you pyproject.toml your version ends with -alpha.0
In order to publish your prerelease to PyPi, all you need to do is open a Pull Request of your current branch to Dev branch. Once the PR is approved and merged, the Prerelease will be done automatically with a github workflow.
In order to publish a release version to PyPi, all you have to do is open a Pull Request of the Dev branch into the Release branch. Once the PR is approved and merged, the Release will be done automatically with a github workflow.
To launch the tests you can run this command
poetry run coverage run -m pytest -s && poetry run coverage report -m
You need to install the following packages:
pip install mkdocs
pip install mkdocstrings
To run the mkdocs documentation, you can run the following lines below:
cd src
mkdocs serve
The documentation will be serving on http://127.0.0.1:8000/.
src/serving/inference.py
contains a Configuration dictionary that you may change:
skip_frames
:3
number of frames to skip. Increase to make the process faster and less accurate.kappa
:7
the moving average window.1
prevents the average, avoid2
which is ill-defined.tau
:4
the number of consecutive observations necessary to keep a track. If you increaseskip_frames
, you should lowertau
.
Consider other branches for that!