Skip to content

Commit

Permalink
Adding Files
Browse files Browse the repository at this point in the history
  • Loading branch information
syamkakarla98 committed Feb 13, 2019
1 parent e768d2b commit d87c3e0
Show file tree
Hide file tree
Showing 16 changed files with 9,670 additions and 0 deletions.
1,201 changes: 1,201 additions & 0 deletions CSV_datasetsix_vowel_dataset_with_class.csv

Large diffs are not rendered by default.

910 changes: 910 additions & 0 deletions NoteBooks/.ipynb_checkpoints/Data_Analysis-checkpoint.ipynb

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

539 changes: 539 additions & 0 deletions NoteBooks/.ipynb_checkpoints/PCA on Dataset-checkpoint.ipynb

Large diffs are not rendered by default.

226 changes: 226 additions & 0 deletions NoteBooks/.ipynb_checkpoints/Primary Data Analysis-checkpoint.ipynb

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,364 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SVM on Handwritten Digits"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading libraries"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.svm import SVC\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"from sklearn import decomposition\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn import metrics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>pixel0</th>\n",
" <th>pixel1</th>\n",
" <th>pixel2</th>\n",
" <th>pixel3</th>\n",
" <th>pixel4</th>\n",
" <th>pixel5</th>\n",
" <th>pixel6</th>\n",
" <th>pixel7</th>\n",
" <th>pixel8</th>\n",
" <th>pixel9</th>\n",
" <th>...</th>\n",
" <th>pixel775</th>\n",
" <th>pixel776</th>\n",
" <th>pixel777</th>\n",
" <th>pixel778</th>\n",
" <th>pixel779</th>\n",
" <th>pixel780</th>\n",
" <th>pixel781</th>\n",
" <th>pixel782</th>\n",
" <th>pixel783</th>\n",
" <th>class</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>252</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>...</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>...</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>...</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>...</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>253</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>254</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>...</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>255</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 785 columns</p>\n",
"</div>"
],
"text/plain": [
" pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n",
"0 255 255 254 255 255 255 252 255 255 \n",
"1 255 255 254 255 255 254 255 255 255 \n",
"2 255 254 255 255 255 255 254 255 254 \n",
"3 254 255 255 255 254 255 255 255 254 \n",
"4 254 255 255 253 255 255 255 254 255 \n",
"\n",
" pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 \\\n",
"0 255 ... 255 255 255 255 255 255 \n",
"1 255 ... 255 255 255 255 255 255 \n",
"2 255 ... 255 255 255 255 255 255 \n",
"3 255 ... 255 255 255 255 255 255 \n",
"4 255 ... 255 255 255 255 255 255 \n",
"\n",
" pixel781 pixel782 pixel783 class \n",
"0 255 255 255 1 \n",
"1 255 255 255 1 \n",
"2 255 255 255 1 \n",
"3 255 255 255 1 \n",
"4 255 255 255 1 \n",
"\n",
"[5 rows x 785 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(\"E://Telugu Character Recogniton//CSV_dataset//CSV_datasetsix_vowel_dataset_with_class.csv\")\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Splitting data into 'train' and 'test'"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"pix=[]\n",
"for i in range(784):\n",
" pix.append('pixel'+str(i))\n",
"features=pix\n",
"X = df.loc[:, features].values\n",
"y = df.loc[:,'class'].values\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, test_size = 0.25, random_state = 100)\n",
"y_train=y_train.ravel()\n",
"y_test=y_test.ravel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Building classifier"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"\n",
"svm_model = SVC(kernel = 'poly', C = 1, gamma=2).fit(X_train, y_train)\n",
"svm_predictions = svm_model.predict(X_test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Finding accuracy of the model"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 89.33333333333333\n"
]
}
],
"source": [
"accuracy = svm_model.score(X_test, y_test)\n",
"print('Accuracy: ',accuracy*100)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <font color='tomato'>Accuracy of the model is: </font><font color='MediumSpringGreen'>89.333333333</font>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conclusion:\n",
"* <font color='navy' face='lucida console'><strong>Support Vector Machine(SVM) performs well on the small dataset when compared to other models like K-NNC and Neural Neetworks.</strong></font>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading

0 comments on commit d87c3e0

Please sign in to comment.