-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
1,894 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -131,4 +131,7 @@ dmypy.json | |
.pyre/ | ||
|
||
# IDE | ||
.idea/ | ||
.idea/ | ||
|
||
#Output | ||
*.csv |
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
{ | ||
"initial_values": [[4.4793,-4.0765,-4.0765],[-4.1793,-4.9218,1.7664],[-3.9429,-0.7689,4.8830]], | ||
"initial_results": [0,1,1], | ||
"limit_first_generation": 10, | ||
"population_size": 50, | ||
"generations": 1000, | ||
"output_path": "resources/output1", | ||
"crossbreeding" : { | ||
"method": "simple", | ||
"multiple_point_n": 3 | ||
}, | ||
"mutation" : { | ||
"method": "uniform", | ||
"probability": 0.05, | ||
"sigma" : 2, | ||
"a" : 0.1 | ||
}, | ||
"selection": { | ||
"method": "boltzmann", | ||
"tournament_threshold": 0.8, | ||
"truncation_k": 10, | ||
"boltzmann_t0": 20, | ||
"boltzmann_tc": 10, | ||
"boltzmann_k": 0.1 | ||
} | ||
|
||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
MIN_GENERATIONS = 500 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
import random | ||
from models import Crossbreeding, Individual | ||
|
||
def simple_crossbreeding(population): | ||
chrom_length = len(population[0].chromosome) | ||
random.shuffle(population) #Shuffle in case it is ordered from another step and improve diversity of children | ||
children = [] | ||
for i in range(0, len(population)-1, 2): | ||
parent1 = population[i] | ||
parent2 = population[i+1] | ||
index = random.randint(1, chrom_length-1) #Between 1 and len-1 so as to not create a child equal to parent | ||
chromosome1 = [] | ||
chromosome2 = [] | ||
for j in range(0, index): | ||
chromosome1.append(parent1.chromosome[j]) | ||
chromosome2.append(parent2.chromosome[j]) | ||
for j in range(index, chrom_length): | ||
chromosome1.append(parent2.chromosome[j]) | ||
chromosome2.append(parent1.chromosome[j]) | ||
children.append(Individual(chromosome1)) | ||
children.append(Individual(chromosome2)) | ||
return children | ||
|
||
|
||
def multiple_crossbreeding(population): | ||
chrom_length = len(population[0].chromosome) | ||
random.shuffle(population) #Shuffle in case it is ordered from another step and imrpove diversity of children | ||
children = [] | ||
|
||
points_number = Crossbreeding.points_number | ||
try: | ||
indexes = random.sample(range(0, chrom_length-1), points_number) #Here between 0 and len-1 because there are more points afterwards so the children wont equal parent | ||
except ValueError: | ||
print('Number of points exceed chromosome length for multiple point crossbreeding') | ||
exit(-1) | ||
|
||
switched = False | ||
for i in range(0, len(population)-1, 2): | ||
parent1 = population[i] | ||
parent2 = population[i+1] | ||
chromosome1 = [] | ||
chromosome2 = [] | ||
for j in range(0, chrom_length): | ||
if j in indexes: | ||
switched = not switched | ||
if not switched: | ||
chromosome1.append(parent1.chromosome[j]) | ||
chromosome2.append(parent2.chromosome[j]) | ||
else: | ||
chromosome1.append(parent2.chromosome[j]) | ||
chromosome2.append(parent1.chromosome[j]) | ||
children.append(Individual(chromosome1)) | ||
children.append(Individual(chromosome2)) | ||
return children | ||
|
||
|
||
def uniform_crossbreeding(population): | ||
chrom_length = len(population[0].chromosome) | ||
random.shuffle(population) #Shuffle in case it is ordered from another step and imrpove diversity of children | ||
children = [] | ||
for i in range(0, len(population)-1, 2): | ||
parent1 = population[i] | ||
parent2 = population[i+1] | ||
chromosome1 = [] | ||
chromosome2 = [] | ||
for j in range(0, chrom_length): | ||
if random.random() >= 0.5: | ||
chromosome1.append(parent1.chromosome[j]) | ||
chromosome2.append(parent2.chromosome[j]) | ||
else: | ||
chromosome1.append(parent2.chromosome[j]) | ||
chromosome2.append(parent1.chromosome[j]) | ||
children.append(Individual(chromosome1)) | ||
children.append(Individual(chromosome2)) | ||
return children | ||
|
||
def crossbreeding_chooser(crossbreeding_param): | ||
if crossbreeding_param == None or crossbreeding_param.get("method") == None: | ||
print("Crossbreeding method required") | ||
exit(-1) | ||
|
||
method = crossbreeding_param.get("method") | ||
|
||
if(method == "simple"): | ||
return Crossbreeding(method, simple_crossbreeding) | ||
if(method == "multiple"): | ||
points = crossbreeding_param.get("multiple_point_n") | ||
if points == None or points <=0: | ||
print("Specify a positive quantity of points for mutiple crossbreeding") | ||
exit(-1) | ||
Crossbreeding.points_number = crossbreeding_param.get("multiple_point_n") | ||
return Crossbreeding(method, multiple_crossbreeding) | ||
if(method == "uniform"): | ||
return Crossbreeding(method, uniform_crossbreeding) | ||
else: | ||
print("Incorrect crossbreeding algorithm") | ||
exit(-1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
from main import __main__ as genetic_algorithm | ||
import sys | ||
import json | ||
|
||
mutation = [[0.05,0.1], [0.1,1], [0.2,2]] | ||
simple_algorithms = ["elite", "roulette", "rank"] | ||
complex_algorithm_names=["tournament_wr", "tournament_nr","truncation"] | ||
complex_algorithm_param_names=["tournament_threshold","tournament_threshold","truncation_k"] | ||
complex_algorithm_params_values = [[0.5,0.65,0.80],[0.5,0.65,0.80],[10,25,50]] | ||
boltzmann_param_names=["boltzmann_tc","boltzmann_t0","boltzmann_k"] | ||
boltzmann_param_values = [[10,70,0.01],[10,140,0.01],[10,70,0.05],[10,140,0.05]] | ||
variability = ["Low", "Medium", "High"] | ||
|
||
def simple_algs(total_runs,output_path,avg_output_path): | ||
simple_header="Selection,Variability,Step,Min,Max\n" | ||
lines = [] | ||
|
||
with open("config.json", "r") as file: | ||
json_values = json.load(file) | ||
json_values.update({"crossbreeding" : {"method": "simple"}}) | ||
json_values.pop("error_threshold",-1) | ||
json_values["generations"] = 1000 | ||
json_values["limit_first_generation"] = 10 | ||
json_values["population_size"] = 50 | ||
with open("config.json", "w") as file: | ||
json.dump(json_values,file,indent=4) | ||
|
||
for (index_alg,algorithm) in enumerate(simple_algorithms): | ||
lines.append([]) | ||
for (index_var,args) in enumerate(mutation): | ||
lines[index_alg].append([]) | ||
for i in range(1, total_runs+1): | ||
with open("config.json", "r") as file: | ||
json_values = json.load(file) | ||
json_values.get("selection").update({"method": algorithm}) | ||
json_values.update({"output_path":(output_path + str(i))}) | ||
json_values.update({"mutation": {"method": "uniform","probability": args[0],"a": args[1]}}) | ||
with open("config.json", "w") as file: | ||
json.dump(json_values,file,indent=4) | ||
print('------------------------------------------------------') | ||
print('RUN NUMBER '+ str(i)) | ||
genetic_algorithm() | ||
for i in range(1,total_runs+1): | ||
file = open("{0}{1}.csv".format(output_path,i)) | ||
lines[index_alg][index_var].append(file.readlines()) | ||
file.close() | ||
|
||
with open(avg_output_path, 'w') as f: | ||
f.write(simple_header) | ||
|
||
line_len = len(lines[0][0][0]) | ||
|
||
for (index_alg, line_alg) in enumerate(lines): | ||
for (index_var,line_var) in enumerate(line_alg): | ||
for i in range(0,line_len): | ||
current_max_sum = 0 | ||
current_min_sum = 0 | ||
for j in range(0,total_runs): | ||
line_values = line_var[j][i].split(',') | ||
current_min_sum += float(line_values[0]) | ||
current_max_sum += float(line_values[1]) | ||
f.write("{0},{1},{2},{3},{4}\n".format(simple_algorithms[index_alg],variability[index_var],i+1,current_min_sum / total_runs, current_max_sum / total_runs)) | ||
|
||
def complex_algs(total_runs,output_path,avg_output_path): | ||
complex_header="Selection,Param_Name,Param_Value,Variability,Step,Min,Max\n" | ||
lines = [] | ||
|
||
with open("config.json", "r") as file: | ||
json_values = json.load(file) | ||
json_values.update({"crossbreeding" : {"method": "simple"}}) | ||
json_values.pop("error_threshold",-1) | ||
json_values["generations"] = 1000 | ||
json_values["limit_first_generation"] = 10 | ||
json_values["population_size"] = 50 | ||
with open("config.json", "w") as file: | ||
json.dump(json_values,file,indent=4) | ||
|
||
for (index_alg,algorithm) in enumerate(complex_algorithm_names): | ||
lines.append([]) | ||
for (index_param,algorithm_param) in enumerate(complex_algorithm_params_values[index_alg]): | ||
lines[index_alg].append([]) | ||
for (index_var,args) in enumerate(mutation): | ||
lines[index_alg][index_param].append([]) | ||
for i in range(1, total_runs+1): | ||
with open("config.json", "r") as file: | ||
json_values = json.load(file) | ||
json_values.get("selection").update({"method": algorithm, complex_algorithm_param_names[index_alg] : algorithm_param}) | ||
json_values.update({"output_path":(output_path + str(i))}) | ||
json_values.update({"mutation": {"method": "uniform","probability": args[0],"a": args[1]}}) | ||
with open("config.json", "w") as file: | ||
json.dump(json_values,file,indent=4) | ||
print('------------------------------------------------------') | ||
print('RUN NUMBER '+ str(i)) | ||
genetic_algorithm() | ||
for i in range(1,total_runs+1): | ||
file = open("{0}{1}.csv".format(output_path,i)) | ||
lines[index_alg][index_param][index_var].append(file.readlines()) | ||
file.close() | ||
|
||
with open(avg_output_path, 'w') as f: | ||
f.write(complex_header) | ||
|
||
line_len = len(lines[0][0][0][0]) | ||
|
||
for (index_alg, line_alg) in enumerate(lines): | ||
for(index_param,line_param) in enumerate(line_alg): | ||
for (index_var,line_var) in enumerate(line_param): | ||
for i in range(0,line_len): | ||
current_max_sum = 0 | ||
current_min_sum = 0 | ||
for j in range(0,total_runs): | ||
line_values = line_var[j][i].split(',') | ||
current_min_sum += float(line_values[0]) | ||
current_max_sum += float(line_values[1]) | ||
f.write("{0},{1},{2},{3},{4},{5},{6}\n".format(complex_algorithm_names[index_alg], complex_algorithm_param_names[index_alg], complex_algorithm_params_values[index_alg][index_param],variability[index_var],i+1,current_min_sum / total_runs, current_max_sum / total_runs)) | ||
|
||
def boltzmann_alg(total_runs,output_path,avg_output_path): | ||
boltzmann_header="Selection,Tc,T0,k,Variability,Step,Min,Max\n" | ||
lines = [] | ||
|
||
with open("config.json", "r") as file: | ||
json_values = json.load(file) | ||
json_values.update({"crossbreeding" : {"method": "simple"}}) | ||
json_values.pop("error_threshold",-1) | ||
json_values["generations"] = 1000 | ||
json_values["limit_first_generation"] = 10 | ||
json_values["population_size"] = 50 | ||
with open("config.json", "w") as file: | ||
json.dump(json_values,file,indent=4) | ||
|
||
for (index_param_comb, params) in enumerate(boltzmann_param_values): | ||
lines.append([]) | ||
for (index_var,args) in enumerate(mutation): | ||
lines[index_param_comb].append([]) | ||
for i in range(1, total_runs+1): | ||
with open("config.json", "r") as file: | ||
json_values = json.load(file) | ||
json_values.get("selection").update({"method": "boltzmann",boltzmann_param_names[0]:params[0],boltzmann_param_names[1]:params[1],boltzmann_param_names[2]:params[2]}) | ||
json_values.update({"output_path":(output_path + str(i))}) | ||
json_values.update({"mutation": {"method": "uniform","probability": args[0],"a": args[1]}}) | ||
with open("config.json", "w") as file: | ||
json.dump(json_values,file,indent=4) | ||
print('------------------------------------------------------') | ||
print('RUN NUMBER '+ str(i)) | ||
genetic_algorithm() | ||
for i in range(1,total_runs+1): | ||
file = open("{0}{1}.csv".format(output_path,i)) | ||
lines[index_param_comb][index_var].append(file.readlines()) | ||
file.close() | ||
|
||
with open(avg_output_path, 'w') as f: | ||
f.write(boltzmann_header) | ||
|
||
line_len = len(lines[0][0][0]) | ||
|
||
for (index_param_comb, line_param_comb) in enumerate(lines): | ||
for (index_var,line_var) in enumerate(line_param_comb): | ||
for i in range(0,line_len): | ||
current_max_sum = 0 | ||
current_min_sum = 0 | ||
for j in range(0,total_runs): | ||
line_values = line_var[j][i].split(',') | ||
current_min_sum += float(line_values[0]) | ||
current_max_sum += float(line_values[1]) | ||
f.write("{0},{1},{2},{3},{4},{5},{6},{7}\n".format("boltzmann",boltzmann_param_values[index_param_comb][0],boltzmann_param_values[index_param_comb][1],boltzmann_param_values[index_param_comb][2],variability[index_var],i+1,current_min_sum / total_runs, current_max_sum / total_runs)) | ||
|
||
|
||
def __main__(total_runs,type,output_path,avg_output_path): | ||
if(type == "simple"): | ||
simple_algs(int(total_runs),output_path,avg_output_path) | ||
elif(type=="complex"): | ||
complex_algs(int(total_runs),output_path,avg_output_path) | ||
elif(type=="boltzmann"): | ||
boltzmann_alg(int(total_runs),output_path,avg_output_path) | ||
else: | ||
print("Wrong type") | ||
exit(-1) | ||
|
||
if __name__ == "__main__": | ||
__main__(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4]) |
Oops, something went wrong.