TensorFlow Serving Client for Java (TFSC4J) is a Java client library for TensorFlow Serving. It supports the following TensorFlow Serving Client API (gRPC):
- Java 17+
-
Add the JitPack repository to your
pom.xml
:<repositories> <repository> <id>jitpack.io</id> <url>https://jitpack.io</url> </repository> </repositories>
-
Add the dependency:
<dependency> <groupId>com.github.tadayosi</groupId> <artifactId>tensorflow-serving-client-java</artifactId> <version>v0.1.1</version> </dependency>
Important
TFSC4J uses the gRPC port (default: 8500
) to communicate with the TensorFlow model server.
To creat a client:
TensorFlowServingClient client = TensorFlowServingClient.newInstance();
By default, the client connects to localhost:8500
, but if you want to connect to a different target URI (e.g. example.com:8080
), instantiate a client as follows:
TensorFlowServingClient client = TensorFlowServingClient.builder()
.target("example.com:8080")
.build();
To get the status of a model:
try (TensorFlowServingClient client = TensorFlowServingClient.newInstance()) {
GetModelStatusRequest request = GetModelStatusRequest.newBuilder()
.setModelSpec(ModelSpec.newBuilder()
.setName("half_plus_two")
.setVersion(Int64Value.of(123)))
.build();
GetModelStatusResponse response = client.getModelStatus(request);
System.out.println(response);
}
Output:
model_version_status {
version: 123
state: AVAILABLE
status {
}
}
To get the metadata of a model:
try (TensorFlowServingClient client = TensorFlowServingClient.newInstance()) {
GetModelMetadataRequest request = GetModelMetadataRequest.newBuilder()
.setModelSpec(ModelSpec.newBuilder()
.setName("half_plus_two")
.setVersion(Int64Value.of(123)))
.addMetadataField("signature_def")) // metadata_field is mandatory
.build();
GetModelMetadataResponse response = client.getModelMetadata(request);
System.out.println(response);
}
Output:
model_spec {
name: "half_plus_two"
version {
value: 123
}
}
metadata {
key: "signature_def"
value {
type_url: "type.googleapis.com/tensorflow.serving.SignatureDefMap"
value: "..."
}
}
To classify:
try (TensorFlowServingClient client = TensorFlowServingClient.newInstance()) {
ClassificationRequest request = ClassificationRequest.newBuilder()
.setModelSpec(ModelSpec.newBuilder()
.setName("half_plus_two")
.setVersion(Int64Value.of(123))
.setSignatureName("classify_x_to_y"))
.setInput(Input.newBuilder()
.setExampleList(ExampleList.newBuilder()
.addExamples(Example.newBuilder()
.setFeatures(Features.newBuilder()
.putFeature("x", Feature.newBuilder()
.setFloatList(FloatList.newBuilder().addValue(1.0f))
.build())))))
.build();
ClassificationResponse response = client.classify(request);
System.out.println(response);
}
Output:
result {
classifications {
classes {
score: 2.5
}
}
}
model_spec {
name: "half_plus_two"
version {
value: 123
}
signature_name: "classify_x_to_y"
}
To regress:
try (TensorFlowServingClient client = TensorFlowServingClient.newInstance()) {
RegressionRequest request = RegressionRequest.newBuilder()
.setModelSpec(ModelSpec.newBuilder()
.setName("half_plus_two")
.setVersion(Int64Value.of(123))
.setSignatureName("regress_x_to_y"))
.setInput(Input.newBuilder()
.setExampleList(ExampleList.newBuilder()
.addExamples(Example.newBuilder()
.setFeatures(Features.newBuilder()
.putFeature("x", Feature.newBuilder()
.setFloatList(FloatList.newBuilder().addValue(1.0f))
.build())))))
.build();
RegressionResponse response = client.regress(request);
System.out.println(response);
}
Output:
result {
regressions {
value: 2.5
}
}
model_spec {
name: "half_plus_two"
version {
value: 123
}
signature_name: "regress_x_to_y"
}
To predict:
try (TensorFlowServingClient client = TensorFlowServingClient.newInstance()) {
PredictRequest request = PredictRequest.newBuilder()
.setModelSpec(ModelSpec.newBuilder()
.setName("half_plus_two")
.setVersion(Int64Value.of(123)))
.putInputs("x", TensorProto.newBuilder()
.setDtype(DataType.DT_FLOAT)
.setTensorShape(TensorShapeProto.newBuilder()
.addDim(Dim.newBuilder().setSize(3)))
.addFloatVal(1.0f)
.addFloatVal(2.0f)
.addFloatVal(5.0f)
.build())
.build();
PredictResponse response = client.predict(request);
System.out.println(response);
}
Output:
outputs {
key: "y"
value {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 3
}
}
float_val: 2.5
float_val: 3.0
float_val: 4.5
}
}
model_spec {
name: "half_plus_two"
version {
value: 123
}
signature_name: "serving_default"
}
target = <target>
credentials = <credentials>
You can configure the TFSC4J properties via system properties with prefix tfsc4j.
.
For instance, you can configure target
with the tfsc4j.target
system property.
You can also configure the TFSC4J properties via environment variables with prefix TFSC4J_
.
For instance, you can configure target
with the TFSC4J_TARGET
environment variable.
See examples.
mvn clean install