-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 2d286e2
Showing
24 changed files
with
7,892 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# formats: ipynb,Rmd,R:light | ||
# text_representation: | ||
# extension: .R | ||
# format_name: light | ||
# format_version: '1.5' | ||
# jupytext_version: 1.11.4 | ||
# kernelspec: | ||
# display_name: R 4.2 | ||
# language: R | ||
# name: ir42 | ||
# --- | ||
|
||
# + [markdown] tags=[] | ||
# ##### Disease risks and longevity scores on UKBB | ||
# - | ||
|
||
# ## Preprocessing UKBB phenotypic data (jan 2021) | ||
|
||
# ##### Initialize and load required packages | ||
|
||
# + tags=[] | ||
source(here::here("code/init.R")) | ||
source(here::here("code/ukbb_preprocessing.R")) | ||
source(here::here("code/models.R")) | ||
options(tgutil.cache=FALSE) | ||
# - | ||
|
||
# ### loading full dataset | ||
|
||
ukbb_data <- load_data() | ||
|
||
# ### Date of birth (dob) and death (dod) | ||
# #### extracting dob / dod /race info from full dataset | ||
|
||
# + tags=[] | ||
ukbb_demog <- get_demog_data(ukbb_data) %cache_df% here('output/ukbb_demog.csv') %>% as_tibble() | ||
# - | ||
|
||
# Show the column data in ukbb_demog | ||
|
||
colnames(ukbb_demog) | ||
|
||
# ### Extracting diagnosis from all sources | ||
# hospitalizations, hesin followups, self reported questionnaires, first occurrences and general practice clinic followup. | ||
|
||
ukbb_diagnosis <- get_diagnosis_data(ukbb_data, ukbb_demog ) %cache_df% here('output/ukbb_diagnosis.csv') %>% as_tibble() | ||
|
||
# ### Loading lab data | ||
|
||
ukbb_visits <- get_visit_data(ukbb_demog) %cache_df% here('output/ukbb_visits.csv') %>% as_tibble() | ||
ukbb_labs <- get_labs_data(ukbb_data, ukbb_visits) %cache_df% here('output/ukbb_labs.csv') %>% as_tibble() %>% | ||
mutate(sex=c('male', 'female')[sex]) %>% | ||
inner_join(ln_ukbb_labs() %>% mutate(field=as.numeric(ukbb_code)) %>% select(field), by = "field") | ||
|
||
|
||
# + [markdown] tags=[] | ||
# ### Normalize labs | ||
# - | ||
|
||
ukbb_labs$q <- ln_normalize_multi_ukbb(ukbb_labs %>% select(id, lab_code=field, age, sex, value)) | ||
|
||
# + tags=[] | ||
head(ukbb_labs %>% select(field, description, age, sex, value, q)) | ||
# - | ||
|
||
# ### Computing diseases onset | ||
|
||
# + tags=[] | ||
cancer_codes <- build_cancer_icd9_icd10_dictionary(ukbb_data) | ||
ukbb_diseases <- get_diseases(ukbb_diagnosis, cancer_codes) %cache_df% here('output/ukbb_diseases.csv') %>% as_tibble() | ||
# - | ||
|
||
# ### Computing parent survival data | ||
|
||
parents <- get_parents_survival(ukbb_data) %cache_df% here('output/ukbb_parents.csv') %>% as_tibble() | ||
|
||
# ### Free up memory | ||
|
||
rm(ukbb_data) | ||
gc() | ||
|
||
# + [markdown] tags=[] | ||
# ## computing Longevity and Diseases models scores | ||
# We will use the `mldpEHR` package to run infer scores from the models that were generated using the Clalit database. | ||
# We start by loading the models. | ||
# ### Load prediction models | ||
|
||
# + | ||
models_dir <- 'data/models/' | ||
predictors <- c('longevity', 'diabetes', 'ckd', 'copd', 'cvd', 'liver') %>% | ||
purrr::set_names() %>% | ||
purrr::map(function(m) | ||
{ | ||
readr::read_rds(paste0(models_dir, m, '.rds')) %>% | ||
purrr::imap( ~ c(.x, age=as.numeric(.y), feature_names=list(unique(unlist(purrr::map(.x$model, ~ .x$feature_names)))))) | ||
}) | ||
|
||
|
||
# - | ||
|
||
# ### gathering all potential model features | ||
# Each predictor had its own features used in the model. | ||
# As the overlap is extensive between the different predictors, we will gather all features and compute them once. | ||
# | ||
|
||
potential_features <- unique(unlist(purrr::map(predictors, function(predictor) { | ||
purrr::map(predictor, function(p) { | ||
p$feature_names | ||
}) | ||
}))) | ||
|
||
# ### computing all features for all patients | ||
|
||
#building features to be used by all predictors (longevity, diseases) | ||
ukbb_to_clalit <- tgutil::fread('data/ukbb_lab_field_to_clalit_lab.csv') | ||
features <- purrr::map2_df(predictors[[1]], names(predictors[[1]]), function(model, age_model) { | ||
message(age_model) | ||
age_model <- as.numeric(age_model) | ||
labs_features <- ukbb_labs %>% filter(age<age_model, age>age_model-5, !is.na(q)) %>% | ||
left_join(ukbb_to_clalit %>% select(field, track), by="field") %>% | ||
mutate(feature=paste0(track, '.quantiles_1_years_minus1095')) %>% | ||
filter(feature %in% potential_features) %>% | ||
group_by(id, feature) %>% summarize(value=mean(q), .groups="drop") | ||
|
||
disease_features <- ukbb_diseases %>% filter(age <= age_model) %>% | ||
mutate(feature=paste0('WZMN.', cohort, '_minus43800_0')) %>% | ||
filter(feature %in% potential_features) %>% | ||
distinct(id, feature) %>% | ||
mutate(value=1) | ||
|
||
ids <- unique(c(labs_features$id, disease_features$id)) | ||
|
||
#adding female/male/age info | ||
features_tidy <- data.frame(id=ids, feature="age", value=age_model) %>% | ||
bind_rows(ukbb_demog %>% filter(id %in% ids) %>% mutate(feature="male", value= sex==1) %>% select(id, feature, value)) %>% | ||
bind_rows(labs_features) %>% | ||
bind_rows(disease_features) | ||
|
||
#moving from tidy format | ||
features <- features_tidy %>% pivot_wider(id_cols='id', names_from='feature') %>% | ||
mutate(sex=2-male) | ||
|
||
#setting missing diesease values to 0 | ||
disease_feature_names <- grep('WZMN.disease', colnames(features), value=TRUE) | ||
features[,disease_feature_names][is.na(features[,disease_feature_names])] <- 0 | ||
|
||
#adding missing features | ||
missing_features <- setdiff(potential_features, colnames(features)) | ||
features[,missing_features] <- NA | ||
|
||
#requiring RBC | ||
features <- features %>% filter(!is.na(lab.101.quantiles_1_years_minus1095)) | ||
return(features) | ||
}) %cache_df% here('output/ukbb_mldp_features.csv') %>% as_tibble() | ||
|
||
|
||
# #### compute scores | ||
|
||
predictor_scores <- purrr::map2_df(predictors, names(predictors), ~ mldp_predict_multi_age(features, .x) %>% mutate(predictor=.y)) | ||
|
||
#note: setting disease score for patients that are already sick to NA | ||
pop <- predictor_scores %>% filter(predictor == "longevity") %>% | ||
select(id, age, sex, longevity=score, longevity_q=quantile) %>% | ||
mutate(sex=factor(c('male', 'female')[sex], levels=c('male', 'female'))) %>% | ||
left_join(predictor_scores %>% filter(predictor != "longevity") %>% | ||
select(id, age, predictor, score) %>% | ||
left_join(ukbb_diseases %>% select(id, disease_age=age, predictor=cohort)) %>% | ||
mutate(score = ifelse(!is.na(disease_age) & disease_age < age, NA, score)) %>% | ||
pivot_wider(id_cols=c("id", "age"), names_from="predictor", values_from="score") | ||
) %cache_df% here('output/pop_scores.csv') %>% as_tibble() | ||
head(pop %>% select(-id)) | ||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.