-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add dimensionality reduction operator
- Loading branch information
1 parent
faa9727
commit 2caf4a4
Showing
4 changed files
with
359 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
"""Operator to perform dimensionality reduction given the embedddings.""" | ||
|
||
from abc import ABC, abstractmethod | ||
from sklearn.manifold import TSNE | ||
import numpy as np | ||
|
||
|
||
class DimensionReduction(ABC): | ||
"""Abstract base class for dimension reduction techniques.""" | ||
|
||
@abstractmethod | ||
def initialize(self, params): | ||
pass | ||
|
||
@abstractmethod | ||
def run(self, embeddings): | ||
pass | ||
|
||
|
||
class TSNEReduction(DimensionReduction): | ||
"""t-SNE implementation of the DimensionReduction abstract class.""" | ||
|
||
def initialize(self, params): | ||
""" | ||
Initialize the t-SNE model with parameters. | ||
Args: | ||
params (dict): A dictionary containing t-SNE parameters such as: | ||
- n_components (int): Number of dimensions to reduce to. Default is 2. | ||
- perplexity (float): Perplexity parameter for t-SNE. Default is 30. | ||
- learning_rate (float): Learning rate for t-SNE. Default is 150. | ||
- n_iter (int): Number of iterations for optimization. Default is 1000. | ||
- random_state (int): Seed for random number generation. Default is 42. | ||
Raises: | ||
ValueError: If the t-SNE model fails to initialize. | ||
""" | ||
try: | ||
self.model = TSNE( | ||
n_components=params.get('n_components', 2), | ||
perplexity=params.get('perplexity', 30), | ||
learning_rate=params.get('learning_rate', 150), | ||
max_iter=params.get('max_iter', 1000), | ||
random_state=params.get('random_state', 42), | ||
method=params.get('method', 'barnes_hut') | ||
) | ||
print("t-SNE model successfully initialized") | ||
except Exception as e: | ||
raise ValueError(f"Failed to initialize t-SNE model: {e}") | ||
|
||
def run(self, embeddings_array): | ||
""" | ||
Apply the t-SNE model to reduce the dimensionality of embeddings. | ||
Args: | ||
embeddings (list or numpy.ndarray): A list or array of embeddings to be reduced. | ||
Returns: | ||
numpy.ndarray: The reduced embeddings as a 2D array. | ||
Raises: | ||
ValueError: If the embeddings input is not a 2D array. | ||
RuntimeError: If the t-SNE reduction fails. | ||
""" | ||
try: | ||
if embeddings_array.ndim != 2: | ||
raise ValueError("Embeddings should be a 2D array.") | ||
return self.model.fit_transform(embeddings_array) | ||
except Exception as e: | ||
raise RuntimeError(f"t-SNE reduction failed: {e}") | ||
|
||
|
||
class DimensionReductionFactory: | ||
"""Factory class for creating dimension reduction models.""" | ||
|
||
@staticmethod | ||
def get_reduction_model(model_type): | ||
""" | ||
Factory method to create a dimension reduction model based on type. | ||
Args: | ||
model_type (str): String indicating the type of model (e.g., 'tsne'). | ||
Returns: | ||
DimensionReduction: An instance of the corresponding dimension reduction model. | ||
Raises: | ||
ValueError: If the specified model type is unsupported. | ||
""" | ||
if model_type.lower() == 'tsne': | ||
return TSNEReduction() | ||
else: | ||
raise ValueError(f"Unsupported model type: {model_type}") | ||
|
||
|
||
def gen_data(payloads, reduced_embeddings): | ||
""" | ||
Generates the formatted output. | ||
Args: | ||
payloads (list): List of paylods. | ||
reduced_embeddings (nd.array): An array of reduced embeddings. | ||
Returns: | ||
list: A list of dictionaries containing the payload and corresponding embedding. | ||
""" | ||
out = [] | ||
|
||
for payload, reduced_embedding in zip(payloads, reduced_embeddings): | ||
tmp_dict = {} | ||
tmp_dict['payload'] = payload | ||
tmp_dict['reduced_embedding'] = reduced_embedding | ||
out.append(tmp_dict) | ||
return out | ||
|
||
|
||
def setup_reduction(model_type, params): | ||
""" | ||
Initialize the dimension reduction model with provided type and parameters. | ||
Args: | ||
model_type (str): String indicating the type of model (e.g., 'tsne'). | ||
params (dict): Dictionary of parameters for the model initialization. | ||
""" | ||
global reduction_model | ||
reduction_model = DimensionReductionFactory.get_reduction_model(model_type) | ||
reduction_model.initialize(params) | ||
|
||
|
||
def perform_reduction(input_data): | ||
""" | ||
Reduce the dimensionality of the provided embeddings using the initialized model. | ||
Args: | ||
input_data (list): A list of dictionaries containing payload and embeddings to be reduced. | ||
Example: | ||
[ | ||
{ | ||
"payload": "123", | ||
"embedding": [1, 2, 3] | ||
}, | ||
{ | ||
"payload": "124", | ||
"embedding": [1, 0, 1] | ||
} | ||
] | ||
Returns: | ||
list: The reduced embeddings and the corresponding payload as a list of dictionaries. | ||
Example: | ||
[ | ||
{ | ||
"payload":"123", | ||
"reduced_embedding": [1, 2] | ||
}, | ||
{ | ||
"payload": "124", | ||
"reduced_embedding": [1, 0] | ||
} | ||
] | ||
Raises: | ||
ValueError: If the embeddings input is not a non-empty list. | ||
KeyError: If the input data is invalid. | ||
""" | ||
if not isinstance(input_data, list) or len(input_data) == 0: | ||
raise ValueError("Input should be a non-empty list.") | ||
|
||
try: | ||
embeddings, payloads = zip(*[(data['embedding'], data['payload']) for data in input_data]) | ||
except KeyError as e: | ||
raise KeyError(f"Invalid data. Each data point in input must have `embedding` and `payload` properties. Missing key: {e}.") | ||
|
||
reduced_embeddings = reduction_model.run(np.array(embeddings)) | ||
|
||
return gen_data(payloads, reduced_embeddings) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
scikit-learn==1.5.1 | ||
numpy==2.1.0 |
129 changes: 129 additions & 0 deletions
129
src/core/operators/dimension_reduction_requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# | ||
# This file is autogenerated by pip-compile with Python 3.10 | ||
# by the following command: | ||
# | ||
# pip-compile --allow-unsafe --generate-hashes core/operators/dimension_reduction_requirements.in | ||
# | ||
joblib==1.4.2 \ | ||
--hash=sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6 \ | ||
--hash=sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e | ||
# via scikit-learn | ||
numpy==2.1.0 \ | ||
--hash=sha256:08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b \ | ||
--hash=sha256:0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911 \ | ||
--hash=sha256:0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977 \ | ||
--hash=sha256:0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84 \ | ||
--hash=sha256:0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b \ | ||
--hash=sha256:10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33 \ | ||
--hash=sha256:15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b \ | ||
--hash=sha256:1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d \ | ||
--hash=sha256:24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111 \ | ||
--hash=sha256:30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673 \ | ||
--hash=sha256:343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06 \ | ||
--hash=sha256:378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36 \ | ||
--hash=sha256:398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f \ | ||
--hash=sha256:3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd \ | ||
--hash=sha256:442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e \ | ||
--hash=sha256:44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62 \ | ||
--hash=sha256:54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb \ | ||
--hash=sha256:5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300 \ | ||
--hash=sha256:54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b \ | ||
--hash=sha256:624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb \ | ||
--hash=sha256:6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8 \ | ||
--hash=sha256:652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195 \ | ||
--hash=sha256:6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2 \ | ||
--hash=sha256:76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce \ | ||
--hash=sha256:7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6 \ | ||
--hash=sha256:7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2 \ | ||
--hash=sha256:848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33 \ | ||
--hash=sha256:899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b \ | ||
--hash=sha256:8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667 \ | ||
--hash=sha256:8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1 \ | ||
--hash=sha256:9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a \ | ||
--hash=sha256:9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e \ | ||
--hash=sha256:a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745 \ | ||
--hash=sha256:a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc \ | ||
--hash=sha256:ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324 \ | ||
--hash=sha256:b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0 \ | ||
--hash=sha256:b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8 \ | ||
--hash=sha256:c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02 \ | ||
--hash=sha256:c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574 \ | ||
--hash=sha256:d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd \ | ||
--hash=sha256:dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1 \ | ||
--hash=sha256:de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5 \ | ||
--hash=sha256:e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d \ | ||
--hash=sha256:f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883 \ | ||
--hash=sha256:f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575 \ | ||
--hash=sha256:f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529 \ | ||
--hash=sha256:f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa \ | ||
--hash=sha256:f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3 \ | ||
--hash=sha256:f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211 \ | ||
--hash=sha256:f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1 \ | ||
--hash=sha256:fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736 \ | ||
--hash=sha256:ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e | ||
# via | ||
# -r core/operators/dimension_reduction_requirements.in | ||
# scikit-learn | ||
# scipy | ||
scikit-learn==1.5.1 \ | ||
--hash=sha256:0828673c5b520e879f2af6a9e99eee0eefea69a2188be1ca68a6121b809055c1 \ | ||
--hash=sha256:0ea5d40c0e3951df445721927448755d3fe1d80833b0b7308ebff5d2a45e6414 \ | ||
--hash=sha256:10e49170691514a94bb2e03787aa921b82dbc507a4ea1f20fd95557862c98dc1 \ | ||
--hash=sha256:154297ee43c0b83af12464adeab378dee2d0a700ccd03979e2b821e7dd7cc1c2 \ | ||
--hash=sha256:161808750c267b77b4a9603cf9c93579c7a74ba8486b1336034c2f1579546d21 \ | ||
--hash=sha256:1bd8d3a19d4bd6dc5a7d4f358c8c3a60934dc058f363c34c0ac1e9e12a31421d \ | ||
--hash=sha256:1ff4ba34c2abff5ec59c803ed1d97d61b036f659a17f55be102679e88f926fac \ | ||
--hash=sha256:508907e5f81390e16d754e8815f7497e52139162fd69c4fdbd2dfa5d6cc88915 \ | ||
--hash=sha256:5944ce1faada31c55fb2ba20a5346b88e36811aab504ccafb9f0339e9f780395 \ | ||
--hash=sha256:5f57428de0c900a98389c4a433d4a3cf89de979b3aa24d1c1d251802aa15e44d \ | ||
--hash=sha256:689b6f74b2c880276e365fe84fe4f1befd6a774f016339c65655eaff12e10cbf \ | ||
--hash=sha256:781586c414f8cc58e71da4f3d7af311e0505a683e112f2f62919e3019abd3745 \ | ||
--hash=sha256:7b073a27797a283187a4ef4ee149959defc350b46cbf63a84d8514fe16b69855 \ | ||
--hash=sha256:88e0672c7ac21eb149d409c74cc29f1d611d5158175846e7a9c2427bd12b3956 \ | ||
--hash=sha256:909144d50f367a513cee6090873ae582dba019cb3fca063b38054fa42704c3a4 \ | ||
--hash=sha256:97625f217c5c0c5d0505fa2af28ae424bd37949bb2f16ace3ff5f2f81fb4498b \ | ||
--hash=sha256:9a07f90846313a7639af6a019d849ff72baadfa4c74c778821ae0fad07b7275b \ | ||
--hash=sha256:b59e3e62d2be870e5c74af4e793293753565c7383ae82943b83383fdcf5cc5c1 \ | ||
--hash=sha256:b5e865e9bd59396220de49cb4a57b17016256637c61b4c5cc81aaf16bc123bbe \ | ||
--hash=sha256:da3f404e9e284d2b0a157e1b56b6566a34eb2798205cba35a211df3296ab7a74 \ | ||
--hash=sha256:f5b213bc29cc30a89a3130393b0e39c847a15d769d6e59539cd86b75d276b1a7 | ||
# via -r core/operators/dimension_reduction_requirements.in | ||
scipy==1.14.1 \ | ||
--hash=sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e \ | ||
--hash=sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79 \ | ||
--hash=sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37 \ | ||
--hash=sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5 \ | ||
--hash=sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675 \ | ||
--hash=sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d \ | ||
--hash=sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f \ | ||
--hash=sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310 \ | ||
--hash=sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617 \ | ||
--hash=sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e \ | ||
--hash=sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e \ | ||
--hash=sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417 \ | ||
--hash=sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d \ | ||
--hash=sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94 \ | ||
--hash=sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad \ | ||
--hash=sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8 \ | ||
--hash=sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0 \ | ||
--hash=sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69 \ | ||
--hash=sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066 \ | ||
--hash=sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3 \ | ||
--hash=sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5 \ | ||
--hash=sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07 \ | ||
--hash=sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2 \ | ||
--hash=sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389 \ | ||
--hash=sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d \ | ||
--hash=sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84 \ | ||
--hash=sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2 \ | ||
--hash=sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3 \ | ||
--hash=sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73 \ | ||
--hash=sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06 \ | ||
--hash=sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc \ | ||
--hash=sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1 \ | ||
--hash=sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2 | ||
# via scikit-learn | ||
threadpoolctl==3.5.0 \ | ||
--hash=sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107 \ | ||
--hash=sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467 | ||
# via scikit-learn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
import unittest | ||
import numpy as np | ||
from core.operators.dimension_reduction import setup_reduction, perform_reduction | ||
|
||
|
||
class TestDimensionReductionOperator(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(cls): | ||
# Initialize operator | ||
cls.initial_params = { | ||
'n_components': 2, | ||
'perplexity': 30, | ||
'learning_rate': 200, | ||
'max_iter': 250, | ||
'random_state': 42, | ||
'method': 'barnes_hut' | ||
} | ||
setup_reduction('tsne', cls.initial_params) | ||
|
||
@classmethod | ||
def tearDownClass(cls): | ||
# Clean up if necessary | ||
pass | ||
|
||
def test_tsne_reduction(self): | ||
# Create sample embeddings | ||
sample_embeddings = np.random.rand(100, 50) # 100 samples, 50 dimensions | ||
|
||
input_data = [{'payload': str(i), 'embedding': embedding} for i, embedding in enumerate(sample_embeddings)] | ||
|
||
# Perform reduction | ||
reduced_data = perform_reduction(input_data) | ||
reduced_embeddings = np.array([d['reduced_embedding'] for d in reduced_data]) | ||
|
||
# Check output shape | ||
self.assertEqual(reduced_embeddings.shape, (100, 2)) # Should reduce to 2D | ||
|
||
def test_invalid_input(self): | ||
# Test with empty list | ||
with self.assertRaises(ValueError): | ||
perform_reduction([]) | ||
|
||
# Test with non-list input | ||
with self.assertRaises(ValueError): | ||
perform_reduction("not a list") | ||
|
||
# Test with missing keys in input data | ||
with self.assertRaises(KeyError): | ||
perform_reduction([{'payload': '123'}]) |