Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Google Colab tutorial on Image_GAN.ipynb utilizing tf2.x #21

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
334 changes: 334 additions & 0 deletions tensorflow_gan/Collab_tutorial_on_GAN_using_tf2_x.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,334 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Collab_tutorial_on_GAN_using_tf2.x.ipynb",
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "h8-7MxIETkG4",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 36
},
"outputId": "c5b2bb65-bf61-43ec-adbe-908c16741db9"
},
"source": [
"# Setting up\n",
"from __future__ import absolute_import, division, print_function, unicode_literals\n",
"try:\n",
" # tf_version only exist in colab\n",
" %tensorflow_version 2.x\n",
"\n",
"except Exception:\n",
" pass\n"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"TensorFlow 2.x selected.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6MD16UIYVt7n",
"colab_type": "text"
},
"source": [
"# SETUP"
]
},
{
"cell_type": "code",
"metadata": {
"id": "A5gKsgrGUZ39",
"colab_type": "code",
"colab": {}
},
"source": [
"import tensorflow as tf\n",
"tf.random.set_seed(7)\n",
"import numpy as np\n",
"np.random.seed(7)\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"import time"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "J0iuziuiVwkA",
"colab_type": "text"
},
"source": [
"# HYPERPARAMETERS\n",
"\n",
"X_Train is the array of images, the user wants to use as training data. Labels and test data aren't needed"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZlWkvpA0UcK5",
"colab_type": "code",
"colab": {}
},
"source": [
"EPOCHS = 60\n",
"BATCH_SIZE = 256\n",
"NO_OF_BATCHES = int(X_Train.shape[0]/BATCH_SIZE)\n",
"HALF_BATCH_SIZE = 128\n",
"NOISE_DIM = 100\n",
"# Customised ADAM optimizer\n",
"adam = tf.keras.optimizers.Adam(lr=2e-4,beta_1=0.5) # lr: Learning Rate"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "YEnk012DV_Et",
"colab_type": "text"
},
"source": [
"# Making up models for GAN"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ewWCDClQUhGo",
"colab_type": "code",
"colab": {}
},
"source": [
"from tensorflow.keras.layers import *\n",
"from tensorflow.keras.layers import LeakyReLU\n",
"from tensorflow.keras.models import Sequential, Model"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "gMbuIfzhWC6K",
"colab_type": "text"
},
"source": [
"# GENERATOR "
]
},
{
"cell_type": "code",
"metadata": {
"id": "oXt9-uPMUjUo",
"colab_type": "code",
"colab": {}
},
"source": [
"# Generator\n",
"generator = Sequential()\n",
"generator.add(Dense(256,input_shape=(NOISE_DIM,)))\n",
"generator.add(LeakyReLU(0.2))\n",
"generator.add(Dense(512))\n",
"generator.add(LeakyReLU(0.2))\n",
"generator.add(Dense(1024))\n",
"generator.add(LeakyReLU(0.2))\n",
"generator.add(Dense(784,activation='tanh'))\n",
"\n",
"# Compile\n",
"generator.compile(loss='binary_crossentropy',optimizer=adam)\n",
"\n",
"generator.summary()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "RZownvPRWGT-",
"colab_type": "text"
},
"source": [
"# DISCRIMINATOR"
]
},
{
"cell_type": "code",
"metadata": {
"id": "KAhiXuXWUnyT",
"colab_type": "code",
"colab": {}
},
"source": [
"#Discriminator\n",
"discriminator = Sequential()\n",
"discriminator.add(Dense(512,input_shape=(784,)))\n",
"discriminator.add(LeakyReLU(0.2))\n",
"discriminator.add(Dense(256))\n",
"discriminator.add(LeakyReLU(0.2))\n",
"discriminator.add(Dense(1,activation='sigmoid'))\n",
"\n",
"discriminator.compile(loss='binary_crossentropy',optimizer=adam)\n",
"discriminator.summary()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "JfnJ1IVIWJt2",
"colab_type": "text"
},
"source": [
"# Combined Model"
]
},
{
"cell_type": "code",
"metadata": {
"id": "VKzNOfNIUpxa",
"colab_type": "code",
"colab": {}
},
"source": [
"# Combined Model (Geneerator + Discriminator) -> Functional API\n",
"discriminator.trainable = False\n",
"gan_input = Input(shape=(NOISE_DIM,))\n",
"generator_output = generator(gan_input)\n",
"gan_output = discriminator(generator_output)\n",
"\n",
"model = Model(gan_input,gan_output)\n",
"model.compile(loss='binary_crossentropy',optimizer=adam)\n",
"\n",
"model.summary()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "tWMncFAzUs_D",
"colab_type": "code",
"colab": {}
},
"source": [
"def showImgs(epoch):\n",
" noise = np.random.normal(0,1,size=(100,NOISE_DIM)) # Random Noise\n",
" generated_imgs = generator.predict(noise)\n",
" generated_imgs = generated_imgs.reshape(-1,28,28)\n",
" \n",
" #Display the Images\n",
" plt.figure(figsize=(10,10))\n",
" for i in range(100):\n",
" plt.subplot(10,10,i+1)\n",
" plt.imshow(generated_imgs[i],cmap='gray',interpolation='nearest')\n",
" plt.axis(\"off\")\n",
" plt.tight_layout()\n",
" plt.show()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "21WSSthiWPuo",
"colab_type": "text"
},
"source": [
"# Training"
]
},
{
"cell_type": "code",
"metadata": {
"id": "TTUSWup6U59U",
"colab_type": "code",
"colab": {}
},
"source": [
"d_losses = []\n",
"g_losses = []\n",
"\n",
"# Training Loop\n",
"for epoch in range(EPOCHS+1): \n",
" epoch_d_loss = 0.0\n",
" epoch_g_loss = 0.0\n",
" \n",
" # Mini Batch\n",
" for step in range(NO_OF_BATCHES):\n",
" idx = np.random.randint(0,X_Train.shape[0],HALF_BATCH_SIZE)\n",
" real_imgs = X_Train[idx]\n",
" \n",
" # generate fake images assuming generator is frozen\n",
" noise = np.random.normal(0,1,size=(HALF_BATCH_SIZE,NOISE_DIM))\n",
" fake_imgs = generator.predict(noise)\n",
" \n",
" # Labels\n",
" real_y = np.ones((HALF_BATCH_SIZE,1))*0.9\n",
" fake_y = np.zeros((HALF_BATCH_SIZE,1))\n",
" \n",
" #Train on Real and Fake Images\n",
" d_real_loss = discriminator.train_on_batch(real_imgs,real_y)\n",
" d_fake_loss = discriminator.train_on_batch(fake_imgs,fake_y)\n",
" \n",
" d_loss = 0.5*d_real_loss + 0.5*d_fake_loss\n",
" epoch_d_loss += d_loss\n",
" \n",
" # Train Generator\n",
" noise = np.random.normal(0,1,size=(BATCH_SIZE,NOISE_DIM))\n",
" real_y = np.ones((BATCH_SIZE,1))\n",
" g_loss = model.train_on_batch(noise,real_y)\n",
" epoch_g_loss += g_loss\n",
" \n",
" d_losses.append(epoch_d_loss)\n",
" g_losses.append(epoch_g_loss)\n",
" \n",
" print(\"Epoch %d D Loss %.4f G loss %0.4f \"%((epoch+1),epoch_d_loss,epoch_g_loss))\n",
" if (epoch%5)==0: #printing images after every 5 epocs\n",
" #generator.save(\"model/gen_{0}.h5\".format(epoch)) # Saving the model\n",
" showImgs(epoch) # Show the image transformation progress at every step"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "tP85ZHAvVksH",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
}
]
}
Loading