Skip to content

Official Implementation of ECCV2022 paper "OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers"

Notifications You must be signed in to change notification settings

thangnn123456/OSFormer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers (ECCV 2022)

OSFormer

SINet-V3 Official Implementation of "OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers"

Jialun Pei*, Tianyang Cheng*, Deng-Ping Fan, He Tang, Chuanbo Chen, and Luc Van Gool

[Paper]; [Chinese Version]; [Project Page]

Contact: [email protected], [email protected]

Sample 1 Sample 2 Sample 3 Sample 4

Environment preparation

The code is tested on CUDA 11.1 and pytorch 1.9.0, change the versions below to your desired ones.

git clone https://github.com/PJLallen/OSFormer.git
cd OSFormer
conda create -n osformer python=3.8 -y
conda activate osformer
conda install pytorch==1.9.0 torchvision cudatoolkit=11.1 -c pytorch -c nvidia -y
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/torch1.9/index.html
python setup.py build develop

Dataset preparation

Download the datasets

Register datasets

  1. generate coco annotation files, you may refer to the tutorial of mmdetection for some help
  2. change the path of the datasets as well as annotations in adet/data/datasets/cis.py, please refer to the docs of detectron2 for more help
# adet/data/datasets/cis.py
# change the paths 
DATASET_ROOT = 'COD10K-v3'
ANN_ROOT = os.path.join(DATASET_ROOT, 'annotations')
TRAIN_PATH = os.path.join(DATASET_ROOT, 'Train/Image')
TEST_PATH = os.path.join(DATASET_ROOT, 'Test/Image')
TRAIN_JSON = os.path.join(ANN_ROOT, 'train_instance.json')
TEST_JSON = os.path.join(ANN_ROOT, 'test2026.json')

NC4K_ROOT = 'NC4K'
NC4K_PATH = os.path.join(NC4K_ROOT, 'Imgs')
NC4K_JSON = os.path.join(NC4K_ROOT, 'nc4k_test.json')

Pre-trained models

Model weights: Baidu (password:l6vn) / Google / Quark

Model Config COD10K-test AP NC4K-test AP
R50-550 configs/CIS_RT.yaml 36.0 41.4
R50 configs/CIS_R50.yaml 41.0 42.5
R101 configs/CIS_R101.yaml 42.0 44.4
PVTv2-B2-Li configs/CIS_PVTv2B2Li 47.2 50.5
SWIN-T configs/CIS_SWINT.yaml 47.7 50.2

Visualization results

The visual results are achieved by our OSFormer with ResNet-50 trained on the COD10K training set.

  • Results on the COD10K test set: Baidu (password:hust) / Google
  • Results on the NC4K test set: Baidu (password:hust) / Google

Frequently asked questions

FAQ

Usage

Train

python tools/train_net.py --config-file configs/CIS_R50.yaml --num-gpus 1 \
  OUTPUT_DIR {PATH_TO_OUTPUT_DIR}

Please replace {PATH_TO_OUTPUT_DIR} to your own output dir

Eval

python tools/train_net.py --config-file configs/CIS_R50.yaml --eval-only \
  MODEL.WEIGHTS {PATH_TO_PRE_TRAINED_WEIGHTS}

Please replace {PATH_TO_PRE_TRAINED_WEIGHTS} to the pre-trained weights

Inference

python demo/demo.py --config-file configs/CIS_R50.yaml \
  --input {PATH_TO_THE_IMG_DIR_OR_FIRE} \
  --output {PATH_TO_SAVE_DIR_OR_IMAGE_FILE} \
  --opts MODEL.WEIGHTS {PATH_TO_PRE_TRAINED_WEIGHTS}
  • {PATH_TO_THE_IMG_DIR_OR_FIRE}: you can put image dir or image paths here
  • {PATH_TO_SAVE_DIR_OR_IMAGE_FILE}: the place where the visualizations will be saved
  • {PATH_TO_PRE_TRAINED_WEIGHTS}: please put the pre-trained weights here

Acknowledgement

This work is based on:

We also get help from mmdetection. Thanks them for their great work!

Citation

If this helps you, please cite this work (SINet-V3):

@inproceedings{pei2022osformer,
  title={OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers},
  author={Pei, Jialun and Cheng, Tianyang and Fan, Deng-Ping and Tang, He and Chen, Chuanbo and Van Gool, Luc},
  booktitle={European conference on computer vision},
  year={2022},
  organization={Springer}
}

For the SINet-V1, and SINet-V2 please cite the following works:

@article{fan2021concealed,
  title={Concealed Object Detection},
  author={Fan, Deng-Ping and Ji, Ge-Peng and Cheng, Ming-Ming and Shao, Ling},
  journal={IEEE TPAMI},
  year={2022}
}
    
@inproceedings{fan2020camouflaged,
  title={Camouflaged object detection},
  author={Fan, Deng-Ping and Ji, Ge-Peng and Sun, Guolei and Cheng, Ming-Ming and Shen, Jianbing and Shao, Ling},
  booktitle={IEEE CVPR},
  pages={2777--2787},
  year={2020}
}

About

Official Implementation of ECCV2022 paper "OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 72.1%
  • Cuda 21.1%
  • C++ 6.7%
  • Shell 0.1%