Skip to content

thiagosalvatore/pyrser

Repository files navigation

pyrser

Transform any HTML page or Document into a Pydantic-based schema using pyrser. This tool allows you to easily extract data from a HTML, PDF, DOC, DOCX, TXT, etc pages, including both static and dynamic content, and map it to structured Pydantic models.

Installation

By default, pyrser installs only the necessary libraries for parsing static HTML pages (those not requiring JavaScript execution) and documents. To parse dynamic pages (those that rely on JavaScript), additional dependencies are required.

Installation for Static HTML Only

pip install pyrser-ai

Installation for Both Static and Dynamic HTML

pip install pyrser-ai[full]
playwright install

Requirements

To use the default configuration make sure that you have a OpenAI account and a LlamaParse account.

Usage

pyrser leverages LlamaIndex and LlamaParse under the hood to parse documents and HTML content and automatically generate schemas. By default, it uses OpenAI’s gpt-4o-mini model, but you can customize the model by passing the model parameter to the extractor or configuring your own LlamaIndex instance.

You can also define HTML tags to exclude from parsing by providing a list via the tags_to_remove parameter in the parse function. If no list is specified, the default set of tags will be ignored.

Default HTML Tags Excluded

TAGS_TO_REMOVE = [
    "img",
    "head",
    "button",
    "svg",
    "style",
    "iframe",
    "header",
    "aside",
    "footer",
    "nav",
    "form",
    "link",
    "noscript",
    "input",
    "textarea",
    "menu",
    "track",
    "canvas",
    "video",
    "audio",
    "source",
]

Example Usages

Parsing a PDF Document with the default configuration

from pydantic import BaseModel, Field
from datetime import datetime
import io
from pyrser_ai.core.parsers.file.file_parser import FileParser

class MyModel(BaseModel):
    cnpj: str = Field(description="The CNPJ of the company")
    due_date: datetime = Field(description="The due date of the document")
    total: float = Field(description="The total value of the document")
    

async def main():
  with open("doc_pdf.pdf", "rb") as f:
      f_bytes = io.BytesIO(f.read())
      f_bytes.seek(0)
  
      result = await FileParser().parse_document(document=f_bytes, file_name="impostos.pdf", output_model=MyModel)
      print(result)

Parsing Static HTML with the default configuration

import aiohttp

from pyrser_ai.core.parsers.html.static_html_parser import StaticHTMLParser
from pydantic import BaseModel


class MyModel(BaseModel):
  title: str
  description: str


async def main():
  async with aiohttp.ClientSession() as session:
    parser = StaticHTMLParser(http_client=session)

    output_model = await parser.parse("https://www.example.com", MyModel)

Parsing Static HTML with a Custom Model

import aiohttp

from pyrser_ai.core.parsers.html.static_html_parser import StaticHTMLParser
from pyrser_ai.core.extractors.llama_index_extractor import LlamaIndexExtractor
from pydantic import BaseModel


class MyModel(BaseModel):
  title: str
  description: str


async def main():
  async with aiohttp.ClientSession() as session:
    extractor = LlamaIndexExtractor(model="gpt-3.5-turbo")
    parser = StaticHTMLParser(extractor=extractor, http_client=session)

    output_model = await parser.parse("https://www.example.com", MyModel)

Parsing Static HTML with a Custom LLM Instance

import aiohttp

from pyrser_ai.core.parsers.html.static_html_parser import StaticHTMLParser
from pyrser_ai.core.extractors.llama_index_extractor import LlamaIndexExtractor
from pydantic import BaseModel
from llama_index.llms.anthropic import Anthropic


class MyModel(BaseModel):
  title: str
  description: str


async def main():
  llm = Anthropic(model="claude-3-sonnet-20240229")

  async with aiohttp.ClientSession() as session:
    extractor = LlamaIndexExtractor(llm=llm)
    parser = StaticHTMLParser(extractor=extractor, http_client=session)

    output_model = await parser.parse("https://www.example.com", MyModel)

Parsing Dynamic HTML with a Custom Model

from pyrser_ai.core.parsers.html.dynamic_html_parser import DynamicHTMLParser
from pyrser_ai.core.extractors.llama_index_extractor import LlamaIndexExtractor
from pydantic import BaseModel


class MyModel(BaseModel):
  title: str
  description: str


async def main():
  extractor = LlamaIndexExtractor(model="gpt-3.5-turbo")
  parser = DynamicHTMLParser(extractor=extractor)

  output_model = await parser.parse("https://www.example.com", MyModel)

Additional Information

  • Some environment variables are needed in order to use the default configuration
    • OPENAI_API_KEY=
    • LLAMA_CLOUD_API_KEY=
  • Model Customization: You can specify any supported LLM model in LlamaIndexExtractor by passing the model name to the model parameter.
  • Excluded Tags: To change the HTML tags excluded during parsing, provide a custom tags_to_remove list. By default, common non-content tags (e.g., img, button, style) are excluded.