-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
77 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# 测度论 | ||
|
||
## 不可测集的构造 | ||
|
||
在承认 AoC (Axiom of Choice) 的情况下,我们可以构造出不可测集: | ||
|
||
在 $[0,1]$ 上构造这样一组等价关系: | ||
|
||
$$ | ||
x \sim y \Leftrightarrow x - y \in \mathbb{Q} | ||
$$ | ||
|
||
在这组等价关系的划分下:$\mathcal{A} = [0,1]/\sim$ 被分成了不可数个等价类,他们两两不交: | ||
|
||
$$ | ||
[0,1] = \bigcup_{\alpha} \mathcal{E}_{\alpha} | ||
$$ | ||
|
||
接下来我们构造 $\mathcal{N}$, 根据 AoC, 总存在一个 $f: \mathcal{A} \to [0,1]$, 在每个 $\mathcal{E}_{\alpha}$ 中选取一个代表元素,使得 $f$ 是一个双射,也就是说: | ||
|
||
$$ | ||
\mathcal{N} = f(\mathcal{A}) | ||
$$ | ||
|
||
**我们证明 $\mathcal{N}$ 是不可测集:** | ||
|
||
考虑反证,假设 $\mathcal{N}$ 是可测集,令 $\{r_k\}_{k=1}^{\infty}$, 是 $[-1,1]$ 上所有有理数的一个排列。(由于 $\mathbb{Q}$ 是可数集,这样的排列总是存在的), 然后考虑平移变换: | ||
|
||
$$ | ||
\mathcal{N}_k = \mathcal{N} + r_k | ||
$$ | ||
|
||
!!! note | ||
|
||
$$ | ||
\forall k_1 \neq k_2, \quad \mathcal{N}_{k_1} \cap \mathcal{N}_{k_2} = \emptyset | ||
$$ | ||
|
||
Proof by contradiction. Suppose $\exists x \in \mathcal{N}_{k_1} \cap \mathcal{N}_{k_2}$, then we have: | ||
|
||
$$ | ||
\exists r_{k_1}, r_{k_2} \in \mathbb{Q},\quad x_\alpha, x_\beta \in \mathcal{N} \\ | ||
x = x_{\alpha} + r_{k_1} = x_{\beta} + r_{k_2} \quad\Rightarrow\quad x_{\alpha} - x_{\beta} = r_{k_2} - r_{k_1} \in \mathbb{Q} | ||
$$ | ||
|
||
在这样的平移变换下,我们注意到: | ||
|
||
- $\displaystyle\bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1,2]$. 这是容易注意到的。 | ||
- $\displaystyle [0,1] \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k$ | ||
|
||
证明需要重新回顾 $\mathcal{N}$ 的构造方式。对于每个 $x\in [0,1]$, 它总是在一个等价类 $\mathcal{E}_\alpha \in \mathcal{A}$ 中的,也总有一个代表元在 $\mathcal{N}$ 中,aka: | ||
|
||
$$ | ||
\overline{x} = f(\mathcal{E}_\alpha) \in \mathcal{N} | ||
$$ | ||
|
||
满足 $x \sim \overline{x} \Rightarrow x - \overline{x} \in \mathbb{Q}$, 也就是说 $x \in \mathcal{N} + r_k$. $\quad \square$ | ||
|
||
因此 $\displaystyle [0,1] \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1,2]$. 有: | ||
|
||
$$ | ||
1 \leq m\left(\bigcup_{k=1}^{\infty} \mathcal{N}_k\right) \leq 3 | ||
$$ | ||
|
||
考虑反证假设,若 $\mathcal{N}$ 是可测集,那么 $\mathcal{N}_k$ 也是可测集,有: | ||
|
||
$$ | ||
1 \leq m\left(\bigcup_{k=1}^{\infty} \mathcal{N}_k\right) = \sum_{k=1}^{\infty} m(\mathcal{N}_k) \leq 3 | ||
$$ | ||
|
||
这是不可能的,考虑到 $\forall k, \ \ m(\mathcal{N}_k) = m(\mathcal{N})$. 对于以下两种情况都不能满足这个不等式: | ||
|
||
- $m(\mathcal{N}) = 0$ | ||
- $m(\mathcal{N}) > 0$ | ||
|
||
得到矛盾,所以 $\mathcal{N}$ 是不可测集。$\quad \square$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters