Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ S3method(conf_mat,table)
S3method(detection_prevalence,data.frame)
S3method(detection_prevalence,matrix)
S3method(detection_prevalence,table)
S3method(extract_plot_data,conf_mat)
S3method(f_meas,data.frame)
S3method(f_meas,matrix)
S3method(f_meas,table)
Expand Down Expand Up @@ -97,6 +98,7 @@ export(conf_mat)
export(detection_prevalence)
export(detection_prevalence_vec)
export(dots_to_estimate)
export(extract_plot_data)
export(f_meas)
export(f_meas_vec)
export(finalize_estimator)
Expand Down
162 changes: 114 additions & 48 deletions R/conf_mat.R
Original file line number Diff line number Diff line change
Expand Up @@ -284,6 +284,9 @@ summary.conf_mat <- function(object,
stats
}


conf_mat_plot_types <- c("mosaic", "heatmap")

# Dynamically exported
autoplot.conf_mat <- function(object, type = "mosaic", ...) {
type <- rlang::arg_match(type, conf_mat_plot_types)
Expand All @@ -294,46 +297,29 @@ autoplot.conf_mat <- function(object, type = "mosaic", ...) {
)
}

conf_mat_plot_types <- c("mosaic", "heatmap")

cm_heat <- function(x) {
`%+%` <- ggplot2::`%+%`
#' @export
extract_plot_data <- function(x, ...){
UseMethod("extract_plot_data")
}

df <- as.data.frame.table(x$table)
# Force specific column names for referencing in ggplot2 code
names(df) <- c("Prediction", "Truth", "Freq")
#' @export
#' @rdname extract_plot_data
#'
#' @param object a yardstick conf_mat
#'
#' @param type type of conf_mat plot
#'
#' @return a list of plot data elements
extract_plot_data.conf_mat <- function(object, type = "mosaic", ...) {

# Have prediction levels going from high to low so they plot in an
# order that matches the LHS of the confusion matrix
lvls <- levels(df$Prediction)
df$Prediction <- factor(df$Prediction, levels = rev(lvls))
type <- rlang::arg_match(type, conf_mat_plot_types)

axis_labels <- get_axis_labels(x)
switch(type,
mosaic = cm_mosaic_data(object),
heatmap = cm_heat_data(object)
)

df %>%
ggplot2::ggplot(
ggplot2::aes(
x = Truth,
y = Prediction,
fill = Freq
)
) %+%
ggplot2::geom_tile() %+%
ggplot2::scale_fill_gradient(
low = "grey90",
high = "grey40"
) %+%
ggplot2::theme(
panel.background = ggplot2::element_blank(),
legend.position = "none"
) %+%
ggplot2::geom_text(
mapping = ggplot2::aes(label = Freq)
) %+%
ggplot2::labs(
x = axis_labels$x,
y = axis_labels$y
)
}

space_fun <- function(x, adjustment, rescale = FALSE) {
Expand All @@ -360,8 +346,10 @@ space_y_fun <- function(data, id, x_data) {
out
}

cm_mosaic <- function(x) {
`%+%` <- ggplot2::`%+%`

cm_mosaic_data <- function(x){

cols <- dim(x$table)[[1]]

cm_zero <- (as.numeric(x$table == 0) / 2) + x$table

Expand All @@ -372,34 +360,112 @@ cm_mosaic <- function(x) {
~ space_y_fun(cm_zero, .x, x_data)
)

full_data <- dplyr::bind_rows(full_data_list)
i <- seq(1, cols ^ 2, cols) + seq(0, cols - 1 , 1)

pred_type <- rep("incorrect", cols * cols)

pred_type[i] <- "correct"

full_data <- dplyr::bind_rows(full_data_list) %>%
dplyr::bind_cols("pred_type" = pred_type, .)

y1_data <- full_data_list[[1]]

tick_labels <- colnames(cm_zero)
axis_labels <- get_axis_labels(x)

ggplot2::ggplot(full_data) %+%
final_data_list <- list(
data = full_data,
x_breaks = (x_data$xmin + x_data$xmax) / 2,
y_breaks = (y1_data$ymin + y1_data$ymax) / 2,
tick_labels = tick_labels,
axis_labels = axis_labels
)

}

cm_heat_data <- function(x){
df <- as.data.frame.table(x$table)
# Force specific column names for referencing in ggplot2 code
names(df) <- c("Prediction", "Truth", "Freq")

# Have prediction levels going from high to low so they plot in an
# order that matches the LHS of the confusion matrix
lvls <- levels(df$Prediction)
df$Prediction <- factor(df$Prediction, levels = rev(lvls))

axis_labels <- get_axis_labels(x)

full_data_list <- list(
data = df,
axis_labels = axis_labels
)
}


cm_heat <- function(x) {
`%+%` <- ggplot2::`%+%`

full_data_list <- cm_heat_data(x)

full_data_list$data %>%
ggplot2::ggplot(
ggplot2::aes(
x = Truth,
y = Prediction,
fill = Freq
)
) %+%
ggplot2::geom_tile() %+%
ggplot2::scale_fill_gradient(
low = "grey90",
high = "grey40"
) %+%
ggplot2::theme(
panel.background = ggplot2::element_blank(),
legend.position = "none"
) %+%
ggplot2::geom_text(
mapping = ggplot2::aes(label = Freq)
) %+%
ggplot2::labs(
x = full_data_list$axis_labels$x,
y = full_data_list$axis_labels$y
)
}


cm_mosaic <- function(x) {
`%+%` <- ggplot2::`%+%`

full_data_list <- cm_mosaic_data(x)

ggplot2::ggplot(full_data_list$data) %+%
ggplot2::geom_rect(
ggplot2::aes(
xmin = xmin,
xmax = xmax,
ymin = ymin,
ymax = ymax
)
) %+%
ymax = ymax,
fill = pred_type
),
alpha = 0.9,
show.legend = F
)%+%
ggplot2::scale_x_continuous(
breaks = (x_data$xmin + x_data$xmax) / 2,
labels = tick_labels
breaks = full_data_list$x_breaks,
labels = full_data_list$tick_labels
) %+%
ggplot2::scale_y_continuous(
breaks = (y1_data$ymin + y1_data$ymax) / 2,
labels = tick_labels
breaks = full_data_list$y_breaks,
labels = full_data_list$tick_labels
) %+%
ggplot2::labs(
y = axis_labels$y,
x = axis_labels$x
y = full_data_list$axis_labels$y,
x = full_data_list$axis_labels$x
) %+%
ggplot2::scale_fill_manual(breaks = c("correct", "incorrect"),
values = c("#4f58bd", "grey70")) %+%
ggplot2::theme(panel.background = ggplot2::element_blank())
}

Expand Down