[arXiv
]
This repo contains the Pytorch implementation of our ICCV 2023 paper:
Adaptive Similarity Bootstrapping for Self-Distillation based Representation Learning
Tim Lebailly*, Thomas Stegmüller*, Behzad Bozorgtabar, Tinne Tuytelaars, and Jean-Philippe Thiran.
Our code only has a few dependencies. First, install PyTorch for your machine following https://pytorch.org/get-started/locally/. Then, install other needed dependencies:
pip install einops
Run the main_adasim.py file. Command line args are defined in parser.py.
python main_adasim.py --args1 val1
Make sure to use the right arguments specified in the table below!
python -m torch.distributed.launch --nproc_per_node=8 main_adasim.py --args1 val1
If you find our work useful, please consider citing:
@article{lebailly2023adaptive,
title={Adaptive Similarity Bootstrapping for Self-Distillation},
author={Lebailly, Tim and Stegm{\"u}ller, Thomas and Bozorgtabar, Behzad and Thiran, Jean-Philippe and Tuytelaars, Tinne},
journal={arXiv preprint arXiv:2303.13606},
year={2023}
}
This code is adapted from DINO.