Skip to content

tmdgns1139/object-detection-level2-cv-18

 
 

Repository files navigation

0. Quick Start

$ sh run.sh

1. Preparing

1.1. Environments

  1. System

    • OS
    $ uname -a
    Linux 78709cb2ea9c 4.4.0-59-generic #80-Ubuntu SMP Fri Jan 6 17:47:47 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
    

    커널: 4.4.0-59-generic 버전
    OS: x86 계열의 64bit 운영체제

    • CPU
    $ cat /proc/cpuinfo 
    Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
    
    • GPU
      • aistage 에서 제공받은 v100 GPU (NVIDIA 테슬라 Tesla V100 32G GPU)
  2. Python

    • version: 3.7.11

1.2. Prepare Dataset

Get the trash dataset

$ wget https://aistages-prod-server-public.s3.amazonaws.com/app/Competitions/000076/data/data.tar.gz
$ tar xvfz data.tar.gz
$ mv ./data/ ./dataset
$ rm ./data.tar.gz
$ rm -rf ./dataset/*/.*.jpg

Check the dataset structure and format(COCO format)

./
└─dataset/
    ├─train/
    |   ├─0000.jpg
    |   ├─ ...
    |   └─48xx.jpg
    ├─test/
    |   ├─0000.jpg
    |   ├─ ...
    |   └─4870.jpg
    ├─train.json
    └─test.json

Trash Dataset Copy Rights: Naver Connect
Trash Dataset Copy Rights License: CC-BY-2.0

1.3. Prepare Libraries

  1. MMDetection

    $ cd ./mmdetection
    $ pip install -v -e . 

    reference: MMDetection github

  2. YOLOv5

    $ cd ./yolov5
    $ pip install -r requirements.txt

    reference: YOLOv5 github

  3. convert2Yolo

    $ git clone https://github.com/ssaru/convert2Yolo.git
    $ cd ./convert2Yolo
    $ pip3 install -r requirements.txt

    reference: conver2Yolo github

  4. WBF (Weighted Boxes Fusion)

    $ pip install ensemble-boxes

    reference: WBF github

1.4. Completed Structure

./
├─dataset/
|    ├─train/
|    |   ├─0000.jpg
|    |   ├─ ...
|    |   └─48xx.jpg
|    ├─test/
|    |   ├─0000.jpg
|    |   ├─ ...
|    |   └─4870.jpg
|    ├─train.json
|    └─test.json
|
├─mmdetection/
├─yolov5/
├─convert2Yolo
|
├─submissions_for_single_model/
|    ├─submission_yolov5s.csv
|    ├─submission_faster_rcnn.csv
|    ├─...
|    └─submission_swin.csv
|
├─run.py 
├─run.sh
|
└─submission.csv # Result of "python run.py" or "sh run.sh"

2. Training

2.1. Before training, convert dataset format (From COCO To YOLO)

  • Prepare the *.names file as below.

     $ cat ./dataset/trash_coco.names
     General trash
     Paper
     Paper pack
     Metal
     Glass
     Plastic
     Styrofoam
     Plastic bag
     Battery
     Clothing
  • Convert dataset format by using convert2Yolo

     $ cd ./convert2Yolo
     $ python3 example.py \
     	--datasets COCO \
     	--img_path ../dataset/ \
     	--label ../dataset/train.json \
     	--convert_output_path ../dataset/ \
     	--img_type ".jpg" \
     	--manifest_path ../dataset \
     	--cls_list_file ../dataset/trash_coco.names
  • Then, we have the following structure.

     ./
     ├─dataset/
     |    ├─train/
     |    |   ├─0000.jpg
     |    |   ├─0000.txt # YOLO format
     |    |   ├─ ...
     |    |   ├─48xx.jpg
     |    |   └─48xx.txt # YOLO format
     |    ├─test/
     |    |   ├─0000.jpg
     |    |   ├─ ...
     |    |   └─4870.jpg
     |    ├─train.json # COCO format
     |    └─test.json  # COCO format
     |
     ├─mmdetection/
     ├─yolov5/
     ├─convert2Yolo
     |
     ├─submissions_for_single_model/
     |    ├─submission_yolov5s.csv
     |    ├─submission_faster_rcnn.csv
     |    ├─...
     |    └─submission_swin.csv
     |
     ├─run.py 
     ├─run.sh
     |
     └─submission.csv # Result of "python run.py" or "sh run.sh"
    

2.2. Train 4 models

  1. detectors-cascade-rcnn-r50

    $ cd ./mmdetection
    $ python tools/train.py \
    	configs/trash/detectors_cascade_rcnn_r50.py
  2. cascade-rcnn-swin-base

    $ cd ./mmdetection
    $ python tools/train.py \
    	configs/trash/swin/cascade_rcnn_swin_base_fpn.py
  3. cascade-rcnn-r50-fpn

    $ cd ./mmdetection
    $ python tools/train.py \
        configs/trash/cascade_rcnn_r50_fpn.py 
  4. YOLOv5x6

    • Before training
    $ cd ./yolov5
    $ pip install -r requirements.txt
    • Train pre-trained model for 10-epochs
    $ python train.py \
        --img 1024 --batch 4 --epochs 10 --data custom.yaml \
        --weights yolov5x6.pt --cache --name 10epoch
    • Train pre-trained model for 20-epochs
    $ python train.py \
        --img 1024 --batch 4 --epochs 20 --data custom.yaml \
        --weights yolov5x6.pt --cache --name 20epochs

3. Inference and Make Submission

  1. detectors-cascade-rcnn-r50

    $ cd ./mmdetection
    $ python tools/test.py \
    	confings/trash/detectors_cascade_rcnn_r50.py \
    	work_dirs/detectors_cascade_rcnn_r50/best*.pth \
    	--out work_dirs/detectors_cascade_rcnn_r50/best.pkl
    $ python tools/pkl_to_submission.py \
    	--pkl work_dirs/detectors_cascade_rcnn_r50/best.pkl \
    	--csv work_dirs/detectors_cascade_rcnn_r50.csv
    $ cp work_dirs/detectors_cascade_rcnn_r50.csv \
    	../submissions_for_single_model/submission_detectors_cascade_rcnn_r50.csv
  2. cascade-rcnn-r50-fpn

    $ cd ./mmdetection
    $ python confings/trash/cascade_rcnn_r50_fpn.py \
    	work_dirs/cascade_rcnn_r50_fpn/best*.pth \
    	--out work_dirs/cascade_rcnn_r50_fpn/best.pkl
    $ python tools/pkl_to_submission.py \
    	--pkl work_dirs/cascade_rcnn_r50_fpn/best.pkl \
    	--csv work_dirs/cascade_rcnn_r50_fpn.csv
    $ cp work_dirs/cascade_rcnn_r50_fpn.csv \
    	../submissions_for_single_model/submission_cascade_rcnn_r50_fpn.csv
  3. cascade-rcnn-swin-base

    $ cd ./mmdetection
    $ python confings/trash/swin/cascade_rcnn_swin_base_fpn.py \
    	work_dirs/cascade_rcnn_swin_base_fpn/best*.pth \
    	--out work_dirs/cascade_rcnn_swin_base_fpn/best.pkl
    $ python tools/pkl_to_submission.py \
    	--pkl work_dirs/cascade_rcnn_swin_base_fpn/best.pkl \
    	--csv work_dirs/cascade_rcnn_swin_base_fpn.csv
    $ cp work_dirs/cascade_rcnn_swin_base_fpn.csv \
    	../submissions_for_single_model/submission_cascade_rcnn_r50_fpn.csv
  4. YOLOv5x6

    • Ensemble 2 models (Use YOLOv5 built-in ensemble)
       $ cd ./yolov5
       $ python detect.py \
       	--weights ./weights/runs/10epoch/train/best.pt ./weights/runs/20epoch/train/best.pt \
       	--source ../dataset/test/ \
       	--imgsz 1024 \
       	--max-det 100 \
       	--device 0 \
       	--classes 0 1 2 3 4 5 6 7 8 9 \
       	--save-txt --save-conf \
       	--nosave \
       	--augment
    • Convert labels to CSV file
       $ cd ./yolov5
       $ python convertcsv.py

4. Ensembling

  • WBF (Weighted Boxes Fusion)
    • Config Format
       {
       	"csvs": ["./output_0.csv", 
       	         "./output_1.csv",
       	         "./output_2.csv",
       	         "./output_3.csv",
       	         "./output_4.csv",
       	         "./output_5.csv"
       	         ],
       	"save_path": "./result_outputs.csv",
       	"ensemble_mode": "wbf",
       	"weights": "None",
       	"iou_thr": 0.5,
       	"skip_box_thr": 0.0001,
       	"sigma": 0.1,
       	"img_size": 1024
       }

      csvs: 단일 모델이 예측한 결과 csv 파일들
      ensemble_mode: Choose the ensemble mode (wbf, nms, nmw, snms)

5. Get the submission.csv

$ python ensemble.py

6. Participants

이름 김서기 김승훈 손지아 이상은 조익수 배민한
역할

About

object-detection-level2-cv-18 created by GitHub Classroom

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 82.9%
  • Python 16.5%
  • Cuda 0.3%
  • C++ 0.2%
  • Shell 0.1%
  • Dockerfile 0.0%