This is the official repository for Nougat, the academic document PDF parser that understands LaTeX math and tables.
Project page: https://facebookresearch.github.io/nougat/
Huggingface Community Demo: https://huggingface.co/spaces/ysharma/nougat
From pip:
pip install nougat-ocr
From repository:
pip install git+https://github.com/facebookresearch/nougat
Note, on Windows: If you want to utilize a GPU, make sure you first install the correct PyTorch version. Follow instructions here
There are extra dependencies if you want to call the model from an API or generate a dataset. Install via
pip install "nougat-ocr[api]"
or pip install "nougat-ocr[dataset]"
To get predictions for a PDF run
$ nougat path/to/file.pdf
usage: nougat [-h] [--batchsize BATCHSIZE] [--checkpoint CHECKPOINT] [--out OUT] [--recompute] [--markdown] pdf [pdf ...]
positional arguments:
pdf PDF(s) to process.
options:
-h, --help show this help message and exit
--batchsize BATCHSIZE, -b BATCHSIZE
Batch size to use.
--checkpoint CHECKPOINT, -c CHECKPOINT
Path to checkpoint directory.
--out OUT, -o OUT Output directory.
--recompute Recompute already computed PDF, discarding previous predictions.
--markdown Add postprocessing step for markdown compatibility.
In the output directory every PDF will be saved as a .mmd
file, the lightweight markup language, mostly compatible with Mathpix Markdown (we make use of the LaTeX tables).
With the extra dependencies you use app.py
to start an API. Call
$ nougat_api
To get a prediction of a PDF file by making a POST request to http://127.0.0.1:8503/predict/. It also accepts parameters start
and stop
to limit the computation to select page numbers (boundaries are included).
To generate a dataset you need
- A directory containing the PDFs
- A directory containing the
.html
files (processed.tex
files by LaTeXML) with the same folder structure - A binary file of pdffigures2 and a corresponding environment variable
export PDFFIGURES_PATH="/path/to/binary.jar"
Next run
python -m nougat.dataset.split_htmls_to_pages --html path/html/root --pdfs path/pdf/root --out path/paired/output --figure path/pdffigures/outputs
Additional arguments include
Argument | Description |
---|---|
--recompute |
recompute all splits |
--markdown MARKDOWN |
Markdown output dir |
--workers WORKERS |
How many processes to use |
--dpi DPI |
What resolution the pages will be saved at |
--timeout TIMEOUT |
max time per paper in seconds |
--tesseract |
Tesseract OCR prediction for each page |
Finally create a jsonl
file that contains all the image paths, markdown text and meta information.
python -m nougat.dataset.create_index --dir path/paired/output --out index.jsonl
For each jsonl
file you also need to generate a seek map for faster data loading:
python -m nougat.dataset.gen_seek file.jsonl
The resulting directory structure can look as follows:
root/
├── images
├── train.jsonl
├── train.seek.map
├── test.jsonl
├── test.seek.map
├── validation.jsonl
└── validation.seek.map
Note that the .mmd
and .json
files in the path/paired/output
(here images
) are no longer required.
This can be useful for pushing to a S3 bucket by halving the amount of files.
To train or fine tune a Nougat model, run
python train.py --config config/train_nougat.yaml
Run
python test.py --checkpoint path/to/checkpoint --dataset path/to/test.jsonl --save_path path/to/results.json
To get the results for the different text modalities, run
python -m nougat.metrics path/to/results.json
@misc{blecher2023nougat,
title={Nougat: Neural Optical Understanding for Academic Documents},
author={Lukas Blecher and Guillem Cucurull and Thomas Scialom and Robert Stojnic},
year={2023},
eprint={2308.13418},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
This repository builds on top of the Donut repository.
Nougat codebase is licensed under MIT.
Nougat model weights are licensed under CC-BY-NC.