forked from twopirllc/pandas-ta
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'pr/342' into development
- Loading branch information
Showing
1 changed file
with
107 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# -*- coding: utf-8 -*- | ||
from pandas_ta.utils import get_offset, verify_series | ||
from pandas import Series | ||
import numpy as np | ||
from numpy import nan as npNaN | ||
import math | ||
|
||
def jma(close, length=None, phase=0, offset=None, **kwargs): | ||
""" | ||
Indicator: Jurik Moving Average (JMA) | ||
Implementation of: https://c.mql5.com/forextsd/forum/164/jurik_1.pdf | ||
Jurik Volty from: https://www.prorealcode.com/prorealtime-indicators/jurik-volatility-bands/ | ||
""" | ||
# Validate Arguments | ||
length = int(length) if length and length > 0 else 7 | ||
close = verify_series(close, length) | ||
offset = get_offset(offset) | ||
if close is None: return | ||
|
||
# Define base variables | ||
jma = np.zeros_like(close) | ||
Volty = np.zeros_like(close) | ||
vSum = np.zeros_like(close) | ||
Kv = det0 = det1 = ma2 = 0.0 | ||
jma[0] = ma1 = uBand = lBand = close[0] | ||
# Static variables | ||
SumLen = 10 | ||
len = 0.5*(length-1) | ||
PR = 0.5 if phase<-100 else 2.5 if phase>100 else phase*0.01+1.5 | ||
len1 = max((math.log(math.sqrt(len))/math.log(2.0))+2.0, 0) | ||
pow1 = max(len1-2.0, 0.5) | ||
len2 = math.sqrt(len)*len1 | ||
bet = len2/(len2+1) | ||
beta = 0.45*(length-1)/(0.45*(length-1)+2.0) | ||
for i in range(1, close.shape[0]): | ||
price = close[i] | ||
# Price volatility | ||
del1 = price-uBand | ||
del2 = price-lBand | ||
Volty[i] = max(abs(del1),abs(del2)) if abs(del1)!=abs(del2) else 0 | ||
# Relative price volatility factor | ||
vSum[i] = vSum[i-1] + (Volty[i]-Volty[max(i-SumLen,0)])/SumLen | ||
avgVolty = np.average(vSum[max(i-65,0):i+1]) | ||
dVolty = 0 if avgVolty==0 else Volty[i]/avgVolty | ||
rVolty = max(1.0, min(math.pow(len1, 1/pow1), dVolty)) | ||
# Jurik volatility bands | ||
pow2 = math.pow(rVolty, pow1) | ||
Kv = math.pow(bet, math.sqrt(pow2)) | ||
uBand = price if (del1 > 0) else price - (Kv*del1) | ||
lBand = price if (del2 < 0) else price - (Kv*del2) | ||
# Jurik Dynamic Factor | ||
power = math.pow(rVolty, pow1) | ||
alpha = math.pow(beta, power) | ||
# 1st stage - prelimimary smoothing by adaptive EMA | ||
ma1 = ((1-alpha)*price)+(alpha*ma1) # | ||
# 2nd stage - one more prelimimary smoothing by Kalman filter | ||
det0 = ((price-ma1)*(1-beta))+(beta*det0) | ||
ma2 = ma1+PR*det0 | ||
# 3rd stage - final smoothing by unique Jurik adaptive filter | ||
det1 = ((ma2-jma[i-1])*(1-alpha)*(1-alpha))+(alpha*alpha*det1) | ||
jma[i] = jma[i-1] + det1 | ||
|
||
# Remove initial lookback data and convert to pandas frame | ||
jma[0:length-1] = npNaN | ||
jma = Series(jma, index=close.index) | ||
|
||
# Offset | ||
if offset != 0: | ||
jma = jma.shift(offset) | ||
|
||
# Handle fills | ||
if "fillna" in kwargs: | ||
jma.fillna(kwargs["fillna"], inplace=True) | ||
if "fill_method" in kwargs: | ||
jma.fillna(method=kwargs["fill_method"], inplace=True) | ||
|
||
# Name & Category | ||
jma.name = f"JMA_{length}" | ||
jma.category = "overlap" | ||
|
||
return jma | ||
|
||
|
||
jma.__doc__ = \ | ||
""" Jurik Moving Average Average (JMA) | ||
Sources: | ||
Implementation of: https://c.mql5.com/forextsd/forum/164/jurik_1.pdf | ||
Calculation: | ||
Default Inputs: | ||
length=7 | ||
phase=0 | ||
Args: | ||
close (pd.Series): Series of 'close's | ||
length (int): Period of calculation. Default: 7 | ||
phase (float): how heavy/light the average is [-100, 100] Default: 0 | ||
offset (int): How many lengths to offset the result. Default: 0 | ||
Kwargs: | ||
fillna (value, optional): pd.DataFrame.fillna(value) | ||
fill_method (value, optional): Type of fill method | ||
Returns: | ||
pd.Series: New feature generated. | ||
""" |