Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Extra comments to Llama2 tutorial #67

Merged
merged 9 commits into from
Nov 8, 2023
45 changes: 22 additions & 23 deletions Popular_Models_Guide/Llama2/trtllm_guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,16 +36,20 @@ You will need to get permissions for the Llama2 repository as well as get access

1. The installation starts with cloning the TensorRT-LLM Backend and update the TensorRT-LLM submodule:
```bash
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git --branch <release branch>
# Update the submodules
cd tensorrtllm_backend
# Change submodule remote url to use https if necessary
git submodule set-url -- tensorrt_llm https://github.com/NVIDIA/TensorRT-LLM.git
git submodule update --init --recursive
git lfs install
git lfs pull
jbkyang-nvi marked this conversation as resolved.
Show resolved Hide resolved
```

2. Then launch Triton docker container with TensorRT-LLM backend
```docker run --rm -it --net host --shm-size=2g --ulimit memlock=-1 --ulimit stack=67108864 --gpus all -v /path/to/tensorrtllm_backend:/tensorrtllm_backend nvcr.io/nvidia/tritonserver:23.10-trtllm-py3 bash```
2. Launch Triton docker container with TensorRT-LLM backend. Note I'm mounting `tensorrtllm_backend` to `/tensorrtllm_backend` and the Llama2 model to `/Llama-2-7b-hf` in the docker container for simplicity. Make an `engines` folder outside docker to reuse engines for future runs.
```bash
docker run --rm -it --net host --shm-size=2g --ulimit memlock=-1 --ulimit stack=67108864 --gpus all -v /path/to/tensorrtllm_backend:/tensorrtllm_backend -v /path/to/Llama2/repo:/Llama-2-7b-hf -v /path/to/engines:/engines nvcr.io/nvidia/tritonserver:23.10-trtllm-python-py3
jbkyang-nvi marked this conversation as resolved.
Show resolved Hide resolved
```

Alternatively, you can follow instructions [here](https://github.com/triton-inference-server/tensorrtllm_backend/blob/main/README.md) to build Triton Server with Tensorrt-LLM Backend if you want to build a specialized container.

Expand All @@ -62,35 +66,29 @@ TensorRT-LLM requires each model to be compiled for the configuration you need b
cp /opt/tritonserver/backends/tensorrtllm/* /usr/local/lib/python3.10/dist-packages/tensorrt_llm/libs/
```

2. Log in to huggingface-cli

```bash
huggingface-cli login --token hf_*****
```

3. Compile model engines
2. Compile model engines

The script to build Llama models is located in [TensorRT-LLM repository](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples). We use the one located in the docker container as `/tensorrtllm_backend/tensorrt_llm/examples/llama/build.py`.
This command compiles the model with inflight batching and 1 GPU. To run with more GPUs, you will need to change the build command to use `--world_size X`.
More details for the scripting please see the documentation for the Llama example [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama/README.md).

```bash
python build.py --model_dir /<path to your llama repo>/Llama-2-7b-hf/ \
python /tensorrtllm_backend/tensorrt_llm/examples/llama/build.py --model_dir /Llama-2-7b-hf/ \
--dtype bfloat16 \
--use_gpt_attention_plugin bfloat16 \
--use_inflight_batching \
--paged_kv_cache \
--remove_input_padding \
--use_gemm_plugin bfloat16 \
--output_dir /<path to your engine>/1-gpu/ \
--output_dir /engines/1-gpu/ \
--world_size 1
```

> Optional: You can check test the output of the model with `run.py`
> located in the same llama examples folder.
>
> ```bash
> python3 run.py --engine_dir=<path to your engine>/1-gpu/ --max_output_len 100 --tokenizer_dir <path to your llama repo>/Llama-2-7b-hf --input_text "How do I count to ten in French?"
> python3 /tensorrtllm_backend/tensorrt_llm/examples/llama/run.py --engine_dir=/engines/1-gpu/ --max_output_len 100 --tokenizer_dir /Llama-2-7b-hf --input_text "How do I count to ten in French?"
> ```

## Serving with Triton
Expand All @@ -110,33 +108,34 @@ To run our Llama2-7B model, you will need to:

```bash
# preprocessing
sed -i 's#${tokenizer_dir}#/<path to your llama repo>/Llama-2-7b-hf/#' /opt/tritonserver/inflight_batcher_llm/preprocessing/config.pbtxt
sed -i 's#${tokenizer_dir}#/Llama-2-7b-hf/#' /opt/tritonserver/inflight_batcher_llm/preprocessing/config.pbtxt
sed -i 's#${tokenizer_type}#auto#' /opt/tritonserver/inflight_batcher_llm/preprocessing/config.pbtxt
sed -i 's#${tokenizer_dir}#/<path to your llama repo>/Llama-2-7b-hf/#' /opt/tritonserver/inflight_batcher_llm/postprocessing/config.pbtxt
sed -i 's#${tokenizer_dir}#/Llama-2-7b-hf/#' /opt/tritonserver/inflight_batcher_llm/postprocessing/config.pbtxt
sed -i 's#${tokenizer_type}#auto#' /opt/tritonserver/inflight_batcher_llm/postprocessing/config.pbtxt

sed -i 's#${decoupled_mode}#false#' /opt/tritonserver/inflight_batcher_llm/tensorrt_llm/config.pbtxt
sed -i 's#${engine_dir}#/<path to your engine>/1-gpu/#' /opt/tritonserver/inflight_batcher_llm/tensorrt_llm/config.pbtxt
sed -i 's#${engine_dir}#/engines/1-gpu/#' /opt/tritonserver/inflight_batcher_llm/tensorrt_llm/config.pbtxt
```
Also, ensure that the `gpt_model_type` parameter is set to `inflight_fused_batching`

fpetrini15 marked this conversation as resolved.
Show resolved Hide resolved
3. Launch Tritonserver

Use the [launch_triton_server.py](https://github.com/triton-inference-server/tensorrtllm_backend/blob/release/0.5.0/scripts/launch_triton_server.py) script. This launches multiple instances of `tritonserver` with MPI.
```bash
tritonserver --model-repository=/opt/tritonserver/inflight_batcher_llm
```
Note if you built the engine with `--world_size X` where `X` is greater than 1, you will need to use the [launch_triton_server.py](https://github.com/triton-inference-server/tensorrtllm_backend/blob/release/0.5.0/scripts/launch_triton_server.py) script.
```bash
python3 /tensorrtllm_backend/scripts/launch_triton_server.py --world_size=X --model_repo=/opt/tritonserver/inflight_batcher_llm
python3 /tensorrtllm_backend/scripts/launch_triton_server.py --world_size=<the engine's world size> --model_repo=/opt/tritonserver/inflight_batcher_llm
jbkyang-nvi marked this conversation as resolved.
Show resolved Hide resolved
```

## Client

You can test the results of the run with:
1. The [inflight_batcher_llm_client.py script](https://github.com/triton-inference-server/tensorrtllm_backend/tree/main/inflight_batcher_llm)
1. The [inflight_batcher_llm_client.py script](https://github.com/triton-inference-server/tensorrtllm_backend/tree/main/inflight_batcher_llm).
jbkyang-nvi marked this conversation as resolved.
Show resolved Hide resolved

```bash
python3 /tensorrtllm_backend/inflight_batcher_llm/client/inflight_batcher_llm_client.py --request-output-len 200
# Using the SDK container as an example
docker run --rm -it --net host --shm-size=2g --ulimit memlock=-1 --ulimit stack=67108864 --gpus all -v /path/to/tensorrtllm_backend:/tensorrtllm_backend -v /path/to/Llama2/repo:/Llama-2-7b-hf -v /path/to/engines:/engines nvcr.io/nvidia/tritonserver:23.10-py3-sdk
jbkyang-nvi marked this conversation as resolved.
Show resolved Hide resolved
# install extra dependencies for the script
jbkyang-nvi marked this conversation as resolved.
Show resolved Hide resolved
pip3 install transformers sentencepiece
python3 /tensorrtllm_backend/inflight_batcher_llm/client/inflight_batcher_llm_client.py --request-output-len 200 --tokenizer_type llama --tokenizer_dir /Llama-2-7b-hf
```

2. The [generate endpoint](https://github.com/triton-inference-server/tensorrtllm_backend/tree/release/0.5.0#query-the-server-with-the-triton-generate-endpoint) if you are using the Triton TensorRT-LLM Backend container with versions greater than `r23.10`.
Expand Down
Loading