Skip to content

Commit

Permalink
Restored train-model files
Browse files Browse the repository at this point in the history
  • Loading branch information
sjaskirat461 committed Nov 26, 2024
1 parent a77e99c commit a5f8c72
Show file tree
Hide file tree
Showing 4 changed files with 438 additions and 0 deletions.
385 changes: 385 additions & 0 deletions train-model/Deploy_your_first_job.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,385 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "KPsrbcty6JfS"
},
"source": [
"##### This notebook demonstrates a demo of how you can deploy your first job with TrueFoundry.\n",
"\n",
"---\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q9eRIwP76rBv"
},
"source": [
"After you complete the notebook, you will have a successful deployed a job to train a model on the iris dataser. Your jobs deployment dashboard will look like this:\n",
"\n",
"![](https://files.readme.io/2f6871c-Screenshot_2022-11-16_at_11.43.31_PM.png)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RbdHA8sf6qm4"
},
"source": [
"## Project structure\n",
"\n",
"To complete this guide, you are going to create the following **files**:\n",
"\n",
"- `train.py` : contains our training code\n",
"- `requirements.txt` : contains our dependencies\n",
"- `deploy.py` contains our deployment code ( you can also use a deployment configuration for deploying using a YAML file)\n",
"\n",
"Your **final file structure** is going to look like this:\n",
"\n",
"```\n",
".\n",
"├── train.py\n",
"├── deploy.py\n",
"└── requirements.txt\n",
"```\n",
"\n",
"As you can see, all the following files are created in the same folder/directory\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1ag-WSEf642R"
},
"source": [
"# Setup\n",
"\n",
"Let's first setup all the things we need to deploy our service.\n",
"\n",
"- Signup or Login on TrueFoundry\n",
"- Setup Workspace\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Vr3iFsrv67Mc"
},
"source": [
"Let's start with installing `truefoundry`.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x5HP_7Qt6pqw",
"outputId": "8bcd94b9-537f-4399-e958-d6e29a3a99c0"
},
"outputs": [],
"source": [
"%pip install -U \"truefoundry>=0.4.1,<0.5.0\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Login into TrueFoundry**\n",
"\n",
"In order to login run the cell below. Host can be found from the TrueFoundry UI as shown below like https://app.truefoundry.com\n",
"\n",
"![image.png](../common/images/host.png)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0QL_ZCes6nEz"
},
"outputs": [],
"source": [
"!tfy login --host \"<Host name of TrueFoundry UI. e.g. https://company.truefoundry.cloud>\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5eDM6Z6r6q8G"
},
"source": [
"**Select the `Workspace` in which you want to deploy your application.**\n",
"\n",
"Once you run the cell below you will get a prompt to enter your Workspace FQN. Follow the docs to\n",
"\n",
"**Create a Workspace**: https://docs.truefoundry.com/docs/key-concepts#creating-a-workspace\n",
"\n",
"**Get Existing Workspace FQN**: https://docs.truefoundry.com/docs/key-concepts#getting-workspace-fqn"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import click"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4AU4ufGu6tpT"
},
"outputs": [],
"source": [
"WORKSPACE_FQN = click.prompt(\n",
" \"Enter the Workspace FQN\",\n",
" type=str,\n",
")\n",
"print(f\"\\nWorkspace FQN set to {WORKSPACE_FQN!r}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IgTqSS3Q7J46"
},
"source": [
"# Step 1: Implement the training code\n",
"\n",
"The first step is to create a job that trains a scikit learn model on iris dataset\n",
"\n",
"We start with a `train.py` containing our training code and `requirements.txt` with our dependencies.\n",
"\n",
"```\n",
".\n",
"├── train.py\n",
"└── requirements.txt\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ewNT1fG07tRY"
},
"source": [
"### **`train.py`**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LuU9kOzv7Ci7",
"outputId": "002753bd-6b23-48ff-aff6-9fa5c0f380d6"
},
"outputs": [],
"source": [
"%%writefile train.py\n",
"from sklearn.datasets import load_iris\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.metrics import classification_report\n",
"\n",
"# load the dataset\n",
"X, y = load_iris(as_frame=True, return_X_y=True)\n",
"X = X.rename(columns={\n",
" \"sepal length (cm)\": \"sepal_length\",\n",
" \"sepal width (cm)\": \"sepal_width\",\n",
" \"petal length (cm)\": \"petal_length\",\n",
" \"petal width (cm)\": \"petal_width\",\n",
"})\n",
"\n",
"# NOTE:- You can pass these configurations via command line\n",
"# arguments, config file, environment variables.\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, test_size=0.2, random_state=42, stratify=y\n",
")\n",
"\n",
"# Initialize the model\n",
"clf = LogisticRegression(solver=\"liblinear\")\n",
"# Fit the model\n",
"clf.fit(X_train, y_train)\n",
"\n",
"preds = clf.predict(X_test)\n",
"print(classification_report(y_true=y_test, y_pred=preds))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Exa3CI-T7jnR"
},
"source": [
"Click on this [link](https://docs.truefoundry.com/v0.1.1/recipes/training-a-scikit-learn-model) to understand the **`app.py`**:\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "c1zqWidl7yTS"
},
"source": [
"### **`requirements.txt`**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vHJts2tR7bfw",
"outputId": "7b4c8cbb-2e42-4e6c-e265-d7acf59ffc6a"
},
"outputs": [],
"source": [
"%%writefile requirements.txt\n",
"pandas==1.5.3\n",
"numpy==1.23.2\n",
"scikit-learn==1.5.0"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vtwCrPGJ750K"
},
"source": [
"# Step 2: Deploying as a Job\n",
"\n",
"You can deploy services on TrueFoundry programmatically via our **Python SDK**.\n",
"\n",
"Create the `deploy.py`, after which our file structure will look like this:\n",
"\n",
"**File Structure**\n",
"\n",
"```Text\n",
".\n",
"├── train.py\n",
"├── deploy.py\n",
"└── requirements.txt\n",
"```\n",
"\n",
"### **`deploy.py`**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jc-yRSkE7xdD",
"outputId": "ffa6fcc8-f43d-4238-8138-ed5131b2322c"
},
"outputs": [],
"source": [
"%%writefile deploy.py\n",
"import argparse\n",
"import logging\n",
"\n",
"from truefoundry.deploy import Build, Job, PythonBuild, LocalSource\n",
"\n",
"logging.basicConfig(\n",
" level=logging.INFO, format=\"%(asctime)s [%(name)s] %(levelname)-8s %(message)s\"\n",
")\n",
"\n",
"parser = argparse.ArgumentParser()\n",
"parser.add_argument(\"--workspace_fqn\", required=True, type=str)\n",
"args = parser.parse_args()\n",
"\n",
"job = Job(\n",
" name=\"iris-train-job\",\n",
" image=Build(\n",
" build_source=LocalSource(local_build=False),\n",
" build_spec=PythonBuild(\n",
" python_version=\"3.11\",\n",
" command=\"python train.py\",\n",
" requirements_path=\"requirements.txt\",\n",
" )\n",
" )\n",
")\n",
"job.deploy(workspace_fqn=args.workspace_fqn, wait=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ac89hU5U8tUy"
},
"source": [
"Click on this [link](https://docs.truefoundry.com/recipes/deploy-training-code-as-a-job) to understand the **`deploy.py`**:\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6bjVtz5v829H"
},
"source": [
"Now to deploy our Job run the command below\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OBNeK70h85L1",
"outputId": "58c98c1d-9622-46b3-e977-8eb9e195d22b"
},
"outputs": [],
"source": [
"!python deploy.py --workspace_fqn $WORKSPACE_FQN"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "jupyter-base",
"language": "python",
"name": "jupyter-base"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading

0 comments on commit a5f8c72

Please sign in to comment.