Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add service deployment mnist #19

Merged
merged 5 commits into from
Feb 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
336 changes: 336 additions & 0 deletions mnist-classifaction/deploy_model.ipynb

Large diffs are not rendered by default.

48 changes: 48 additions & 0 deletions mnist-classifaction/deploy_model/deploy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import argparse
import logging
from servicefoundry import (
Build,
PythonBuild,
Service,
Resources,
Port,
ArtifactsDownload,
TruefoundryArtifactSource,
)

logging.basicConfig(level=logging.INFO)

parser = argparse.ArgumentParser()
parser.add_argument("--workspace_fqn", type=str, required=True)
parser.add_argument("--model_version_fqn", type=str, required=True)
parser.add_argument("--host", type=str, required=True)
parser.add_argument("--path", type=str, required=False)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we add a default path here?

args = parser.parse_args()

service = Service(
name="mnist-classification-svc",
image=Build(
build_spec=PythonBuild(
command="python gradio_demo.py",
requirements_path="requirements.txt",
)
),
ports=[Port(port=8000, host=args.host, path=args.path)],
resources=Resources(
memory_limit=500,
memory_request=500,
ephemeral_storage_limit=600,
ephemeral_storage_request=600,
cpu_limit=0.3,
cpu_request=0.3,
),
artifacts_download=ArtifactsDownload(
artifacts=[
TruefoundryArtifactSource(
debajyoti-truefoundry marked this conversation as resolved.
Show resolved Hide resolved
artifact_version_fqn=args.model_version_fqn,
download_path_env_variable="MODEL_DOWNLOAD_PATH",
)
]
),
)
service.deploy(workspace_fqn=args.workspace_fqn)
32 changes: 32 additions & 0 deletions mnist-classifaction/deploy_model/fastapi_service.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
from fastapi import FastAPI
from pydantic import BaseModel
from predict import predict_fn, load_model
import tensorflow as tf
import numpy as np
import os

model_path = os.path.join(os.environ.get("MODEL_DOWNLOAD_PATH", "."), "mnist_model.h5")
model = load_model(model_path)

app = FastAPI(docs_url="/", root_path=os.getenv("TFY_SERVICE_ROOT_PATH", "/"))


class ImageUrl(BaseModel):
url: str = "https://conx.readthedocs.io/en/latest/_images/MNIST_6_0.png"


def load_image(img_url: str) -> np.ndarray:
img_path = tf.keras.utils.get_file("image.jpg", img_url)
img = tf.keras.preprocessing.image.load_img(img_path, target_size=(28, 28))
img_arr = tf.keras.preprocessing.image.img_to_array(img)
return img_arr


app = FastAPI()


@app.post("/predict")
async def predict(body: ImageUrl):
img_arr = load_image(body.url)
prediction = predict_fn(model, img_arr)
return {"prediction": prediction}
20 changes: 20 additions & 0 deletions mnist-classifaction/deploy_model/gradio_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
from predict import predict_fn, load_model
import os
import gradio as gr

model_path = os.path.join(os.environ.get("MODEL_DOWNLOAD_PATH", "."), "mnist_model.h5")
model = load_model(model_path)


def get_inference(img_arr):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add types?+

return predict_fn(model, img_arr)


interface = gr.Interface(
fn=get_inference,
inputs="image",
outputs="label",
examples=[["sample_images/0.jpg"], ["sample_images/1.jpg"]],
)

interface.launch(server_name="0.0.0.0", server_port=8000)
20 changes: 20 additions & 0 deletions mnist-classifaction/deploy_model/predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
import tensorflow as tf
import numpy as np


def load_model(model_path: str) -> tf.keras.Model:
# Load the trained model
model = tf.keras.models.load_model(model_path)
return model


def predict_fn(model, img_arr: np.ndarray) -> str:
# Preprocess the image before passing it to the model
img_arr = tf.expand_dims(img_arr, 0)
img_arr = img_arr[:, :, :, 0] # Keep only the first channel (grayscale)

# Make predictions
predictions = model.predict(img_arr)
predicted_label = tf.argmax(predictions[0]).numpy()

return str(predicted_label)
3 changes: 3 additions & 0 deletions mnist-classifaction/deploy_model/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
tensorflow==2.15.0
gradio==3.39.0
fastapi==0.89.1
File renamed without changes
File renamed without changes
18 changes: 7 additions & 11 deletions mnist-classifaction/train_job/deploy.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,18 +16,14 @@
command="python train.py --num_epochs {{num_epochs}} --ml_repo {{ml_repo}}",
requirements_path="requirements.txt",
),
build_source=LocalSource(local_build=False)
build_source=LocalSource(local_build=False),
),
params=[
Param(name="num_epochs", default='4'),
Param(name="ml_repo", param_type="ml_repo"),
],
Param(name="num_epochs", default="4"),
Param(name="ml_repo", param_type="ml_repo"),
],
resources=Resources(
cpu_request=0.5,
cpu_limit=0.5,
memory_request=1500,
memory_limit=2000
)

cpu_request=0.5, cpu_limit=0.5, memory_request=1500, memory_limit=2000
),
)
deployment = job.deploy(workspace_fqn=args.workspace_fqn)
deployment = job.deploy(workspace_fqn=args.workspace_fqn)
50 changes: 27 additions & 23 deletions mnist-classifaction/train_job/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,8 @@

# parsing the arguments
parser = argparse.ArgumentParser()
parser.add_argument(
"--num_epochs", type=int, default=4
)
parser.add_argument(
"--ml_repo", type=str, required=True
)
parser.add_argument("--num_epochs", type=int, default=4)
parser.add_argument("--ml_repo", type=str, required=True)
args = parser.parse_args()


Expand All @@ -36,35 +32,45 @@
# Plot some sample images
plt.figure(figsize=(10, 5))
for i in range(10):
plt.subplot(2, 5, i+1)
plt.imshow(x_train[i], cmap='gray')
plt.subplot(2, 5, i + 1)
plt.imshow(x_train[i], cmap="gray")
plt.title(f"Label: {y_train[i]}")
plt.axis('off')
plt.axis("off")
run.log_plots({"images": plt})
plt.tight_layout()


# Define the model architecture
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model = tf.keras.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax"),
]
)

# Compile the model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.compile(
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

#logging the parameters
run.log_params({"optimizer": "adam", "loss": "sparse_categorical_crossentropy", "metric": ["accuracy"]})
# logging the parameters
run.log_params(
{
"optimizer": "adam",
"loss": "sparse_categorical_crossentropy",
"metric": ["accuracy"],
}
)

# Train the model
epochs = args.num_epochs
model.fit(x_train, y_train, epochs=epochs, validation_data=(x_test, y_test))

# Evaluate the model
loss, accuracy = model.evaluate(x_test, y_test)
print(f'Test loss: {loss}')
print(f'Test accuracy: {accuracy}')
print(f"Test loss: {loss}")
print(f"Test accuracy: {accuracy}")


# Log Metrics and Model
Expand All @@ -73,16 +79,14 @@
run.log_metrics(metric_dict={"accuracy": accuracy, "loss": loss})

# Save the trained model
model.save('mnist_model.h5')
model.save("mnist_model.h5")

# Logging the model
run.log_model(
name="handwritten-digits-recognition",
model_file_or_folder='mnist_model.h5',
model_file_or_folder="mnist_model.h5",
framework="tensorflow",
description="sample model to recognize the handwritten digits",
metadata={"accuracy": accuracy, "loss": loss},
step=1, # step number, useful when using iterative algorithms like SGD
)


2 changes: 1 addition & 1 deletion mnist-classifaction/train_model.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
"id": "QOAnoPl-dlSY"
},
"source": [
"# Train and Deploy Model on Truefoundry\n",
"# Train Model on Truefoundry\n",
"This notebook demonstrates a demo on how you can train an image classification model on mnist dataset and deploy the model training job on truefoundry platform."
]
},
Expand Down