Skip to content

tseiger1/kafka-spark-flink-example

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kafka streaming with Spark and Flink example

Example project on how to use Apache Kafka and streaming consumers, namely:

  • Producer sending random number words to Kafka
  • Consumer using Kafka to output received messages
  • Streaming Consumer using Apache Spark to count words occurrences
  • Streaming Consumer using Apache Flink to count words occurrences

Requirements

  • Docker
  • Docker Compose
  • Java 8
  • Maven

Build

  1. Build Java project
    mvn clean package
    
  2. Build Docker image
    docker build -t kafka-spark-flink-example .
    

Run

  1. Start docker containers
    docker-compose up -d
    

Check

  1. Check producer logs

    docker logs kafka-spark-flink-example_kafka-producer_1 -f
    

    Output should be similar to:

    [main] INFO  org.davidcampos.kafka.producer.KafkaProducerExample - Sent (74b23319-084c-4309-80a7-c0d6f107a092, eight) to topic example @ 1525127107909.
    
  2. Check consumer with Spark logs

    docker logs kafka-spark-flink-example_kafka-consumer-spark_1 -f
    

    Output should be similar to:

    (two,3)
    (one,3)
    (nine,5)
    (six,8)
    (three,2)
    (five,2)
    (four,9)
    (seven,3)
    (eight,6)
    (ten,6)
    
  3. Check consumer with Flink logs

    docker logs kafka-spark-flink-example_kafka-consumer-flink_1 -f
    

    Output should be similar to:

    1> (ten,85)
    4> (nine,104)
    1> (ten,86)
    4> (five,91)
    4> (one,94)
    4> (six,90)
    1> (three,89)
    4> (six,91)
    4> (five,92)
    

Kafka Web UI

Kafka Manager Web UI available at http://localhost:9000.

Spark Web UI

Spark Web UI available at http://localhost:4040.

Stop

  1. Stop docker containers
    docker-compose down
    

About

Kafka streaming with Spark and Flink example

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 74.5%
  • Shell 22.5%
  • Dockerfile 3.0%