Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

randomized svd draft #3008

Draft
wants to merge 23 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 11 commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
146 changes: 145 additions & 1 deletion python/tests/test_relatedness_vector.py
Original file line number Diff line number Diff line change
Expand Up @@ -460,7 +460,7 @@ def check_relatedness_vector(
return R


class TestExamples:
class TestRelatednessVector:

def test_bad_weights(self):
n = 5
Expand Down Expand Up @@ -737,3 +737,147 @@ def test_disconnected_non_sample_topology(self, centre):
ts2, internal_checks=True, centre=centre, do_nodes=False
)
np.testing.assert_array_almost_equal(D1, D2)


def pca(ts, windows, centre):
drop_dimension = windows is None
if drop_dimension:
windows = [0, ts.sequence_length]
Sigma = relatedness_matrix(ts=ts, windows=windows, centre=centre)
U, S, _ = np.linalg.svd(Sigma, hermitian=True)
if drop_dimension:
U = U[0]
S = S[0]
return U, S


def allclose_up_to_sign(x, y, **kwargs):
# check if two vectors are the same up to sign
x_const = np.isclose(np.std(x), 0)
y_const = np.isclose(np.std(y), 0)
if x_const or y_const:
if np.allclose(x, 0):
r = 1.0
else:
r = np.mean(x / y)
else:
r = np.sign(np.corrcoef(x, y)[0, 1])
return np.allclose(x, r * y, **kwargs)


def assert_pcs_equal(U, D, U_full, D_full, rtol=1e-05, atol=1e-08):
# check that the PCs in U, D occur in U_full, D_full
# accounting for sign and ordering
assert len(D) <= len(D_full)
assert U.shape[0] == U_full.shape[0]
assert U.shape[1] == len(D)
for k in range(len(D)):
u = U[:, k]
d = D[k]
(ii,) = np.where(np.isclose(D_full, d, rtol=rtol, atol=atol))
assert len(ii) > 0, f"{k}th singular value {d} not found in {D_full}."
found_it = False
for i in ii:
if allclose_up_to_sign(u, U_full[:, i], rtol=rtol, atol=atol):
found_it = True
break
assert found_it, f"{k}th singular vector {u} not found in {U_full}."


class TestPCA:

def verify_pca(self, ts, num_windows, n_components, centre):
if num_windows == 0:
windows = None
elif num_windows % 2 == 0:
windows = np.linspace(
0.2 * ts.sequence_length, 0.8 * ts.sequence_length, num_windows + 1
)
else:
windows = np.linspace(0, ts.sequence_length, num_windows + 1)
ts_U, ts_D = ts.pca(
windows=windows, n_components=n_components, centre=centre, random_seed=123
)
num_rows = ts.num_samples
if windows is None:
assert ts_U.shape == (num_rows, n_components)
assert ts_D.shape == (n_components,)
else:
assert ts_U.shape == (num_windows, num_rows, n_components)
assert ts_D.shape == (num_windows, n_components)
U, D = pca(ts=ts, windows=windows, centre=centre)
if windows is None:
np.testing.assert_allclose(ts_D, D[:n_components], atol=1e-8)
assert_pcs_equal(ts_U, ts_D, U, D)
else:
for w in range(num_windows):
np.testing.assert_allclose(ts_D[w], D[w, :n_components], atol=1e-8)
assert_pcs_equal(ts_U[w], ts_D[w], U[w], D[w])

def test_bad_windows(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
for bad_w in ([], [1]):
with pytest.raises(ValueError, match="Number of windows"):
ts.pca(n_components=2, windows=bad_w)
for bad_w in ([1, 0], [-3, 10]):
with pytest.raises(tskit.LibraryError, match="TSK_ERR_BAD_WINDOWS"):
ts.pca(n_components=2, windows=bad_w)

def test_bad_num_components(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
with pytest.raises(ValueError, match="Number of components"):
ts.pca(n_components=ts.num_samples + 1)
with pytest.raises(ValueError, match="Number of components"):
ts.pca(n_components=4, samples=[0, 1, 2])
with pytest.raises(ValueError, match="Number of components"):
ts.pca(n_components=4, individuals=[0, 1])

def test_indivs_and_samples(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
with pytest.raises(ValueError, match="Samples and individuals"):
ts.pca(n_components=2, samples=[0, 1, 2, 3], individuals=[0, 1, 2])

def test_modes(self):
ts = msprime.sim_ancestry(
3,
ploidy=2,
sequence_length=10,
random_seed=123,
)
for bad_mode in ("site", "node"):
with pytest.raises(
tskit.LibraryError, match="TSK_ERR_UNSUPPORTED_STAT_MODE"
):
ts.pca(n_components=2, mode=bad_mode)

@pytest.mark.parametrize("n", [2, 3, 5, 15])
@pytest.mark.parametrize("centre", (True, False))
@pytest.mark.parametrize("num_windows", (0, 1, 2, 3))
@pytest.mark.parametrize("n_components", (1, 3))
def test_simple_sims(self, n, centre, num_windows, n_components):
ploidy = 1
nc = min(n_components, n * ploidy)
ts = msprime.sim_ancestry(
n,
ploidy=ploidy,
population_size=20,
sequence_length=100,
recombination_rate=0.01,
random_seed=12345,
)
self.verify_pca(ts, num_windows=num_windows, n_components=nc, centre=centre)
189 changes: 189 additions & 0 deletions python/tskit/trees.py
Original file line number Diff line number Diff line change
Expand Up @@ -8592,6 +8592,195 @@ def genetic_relatedness_vector(
)
return out

def pca(
self,
n_components: int = 10,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

perhaps we should not have a default?

windows: list = None,
samples: np.ndarray = None,
individuals: np.ndarray = None,
mode: str = "branch",
centre: bool = True,
iterated_power: int = 3,
n_oversamples: int = 10,
random_seed: int = None,
) -> (np.ndarray, np.ndarray):
"""
Run randomized singular value decomposition (rSVD) to obtain principal
components.
API partially adopted from `scikit-learn`'s
`sklearn.decomposition.PCA.html`

By default, performs PCA for the samples, so output has one coordinate
for each sample), but alternatively either a list of sample IDs or a
list of individual IDs can be provided (but not both).

TODO: say exactly what is returned (and relationship to
:meth:`genetic_relatedness <.TreeSequence.genetic_relatedness>`).

TODO: say what algorithms are used.

:param int n_components: Number of principal components.
:param list windows: An increasing list of breakpoints between the windows
to compute the statistic in.
:param np.ndarray samples: Samples to perform PCA with.
:param np.ndarray individuals: Individuals to perform PCA with. Cannot specify
both `samples` and `individuals`.
:param str mode: A string giving the "type" of relatedness to be computed
(defaults to "branch"; see
:meth:`genetic_relatedness_vector
<.TreeSequence.genetic_relatedness_vector>`)
:param bool centre: Centre the genetic relatedness matrix.
:param int iterated_power: Number of power iteration of range finder.
:param int n_oversamples: Number of additional test vectors.
:param int random_seed: The random seed. If this is None, a random seed will
be automatically generated. Valid random seeds must be between 1 and
:math:`2^32 − 1`.
:return: A tuple (U, D) of ndarrays, with the principal component loadings in U
and the principal values in D.
"""

if samples is None and individuals is None:
samples = self.samples()

if samples is not None and individuals is not None:
raise ValueError("Samples and individuals cannot be used at the same time")
elif samples is not None:
output_type = "node"
dim = len(samples)
else:
assert individuals is not None
output_type = "individual"
dim = len(individuals)

if n_components > dim:
raise ValueError(
"Number of components must be less than or equal to "
"the number of samples (or individuals, if specified)."
)

random_state = np.random.default_rng(random_seed)

def _rand_pow_range_finder(
operator,
operator_dim: int,
rank: int,
depth: int,
num_vectors: int,
rng: np.random.Generator,
) -> np.ndarray:
"""
Algorithm 9 in https://arxiv.org/pdf/2002.01387
"""
assert num_vectors >= rank > 0
test_vectors = rng.normal(size=(operator_dim, num_vectors))
Q = test_vectors
for _ in range(depth):
Q = np.linalg.qr(Q).Q
Q = operator(Q)
Q = np.linalg.qr(Q).Q
return Q[:, :rank]

def _rand_svd(
operator,
operator_dim: int,
rank: int,
depth: int,
num_vectors: int,
rng: np.random.Generator,
) -> (np.ndarray, np.ndarray, np.ndarray):
"""
Algorithm 8 in https://arxiv.org/pdf/2002.01387
"""
assert num_vectors >= rank > 0
Q = _rand_pow_range_finder(
operator, operator_dim, num_vectors, depth, num_vectors, rng
)
C = operator(Q).T
U_hat, D, V = np.linalg.svd(C, full_matrices=False)
U = Q @ U_hat
return U[:, :rank], D[:rank], V[:rank]

def _genetic_relatedness_vector_individual(
petrelharp marked this conversation as resolved.
Show resolved Hide resolved
arr: np.ndarray,
centre: bool = True,
windows=None,
) -> np.ndarray:
ij = np.vstack(
[
[n, k]
for k, i in enumerate(individuals)
for n in self.individual(i).nodes
]
)
samples, sample_individuals = (
ij[:, 0],
ij[:, 1],
) # sample node index, individual of those nodes
x = (
arr - arr.mean(axis=0) if centre else arr
) # centering within index in rows
x = self.genetic_relatedness_vector(
W=x[sample_individuals],
windows=windows,
mode=mode,
centre=False,
nodes=samples,
)[0]

def bincount_fn(w):
np.bincount(sample_individuals, w)

x = np.apply_along_axis(bincount_fn, axis=0, arr=x)
x = x - x.mean(axis=0) if centre else x # centering within index in cols

return x

def _genetic_relatedness_vector_node(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same: automatic linting

arr: np.ndarray,
centre: bool = True,
windows=None,
) -> np.ndarray:
x = arr - arr.mean(axis=0) if centre else arr
x = self.genetic_relatedness_vector(
W=x, windows=windows, mode=mode, centre=False, nodes=samples
)[0]
x = x - x.mean(axis=0) if centre else x

return x

drop_windows = windows is None
windows = self.parse_windows(windows)
num_windows = len(windows) - 1
if num_windows < 1:
raise ValueError("Number of windows must be at least 1.")

U = np.empty((num_windows, dim, n_components))
D = np.empty((num_windows, n_components))
for i in range(num_windows):
this_window = windows[i : i + 2]
_f = (
_genetic_relatedness_vector_node
if output_type == "node"
else _genetic_relatedness_vector_individual
)

def _G(x):
_f(x, centre=centre, windows=this_window) # NOQA: B023

U[i], D[i], _ = _rand_svd(
operator=_G,
operator_dim=dim,
rank=n_components,
depth=iterated_power,
num_vectors=n_components + n_oversamples,
rng=random_state,
)

if drop_windows:
U, D = U[0], D[0]

return U, D

def trait_covariance(self, W, windows=None, mode="site", span_normalise=True):
"""
Computes the mean squared covariances between each of the columns of ``W``
Expand Down
Loading