Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

split the utils and reorg #19

Merged
merged 4 commits into from
May 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,10 @@

import requests

from .utils import (
bfs,
from ..utils.author_relation import bfs
from ..utils.paper_collection import get_bert_embedding
from .agent_prompting import (
generate_ideas,
get_bert_embedding,
summarize_research_direction,
summarize_research_field,
)
Expand Down
133 changes: 133 additions & 0 deletions research_town/agents/agent_prompting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
import time
from typing import Any, Dict, List, Tuple

import openai

from ..utils.paper_collection import (
get_bert_embedding,
neiborhood_search,
)

KEY = "7a1821d4e4a3e41e3d523e97e0fd8950dedac2824aef99cb19d550500cb21a42"
openai.api_base = "https://api.together.xyz"
llm_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"


def summarize_research_field(
profile: Dict[str, str],
keywords: List[str],
dataset: Dict[str, Any],
data_embedding: Dict[str, Any],
) -> Tuple[List[str], List[str]]:
openai.api_key = KEY
query_format = (
"Given the profile of me, keywords, some recent paper titles and abstracts. Could you summarize the keywords of high level research backgrounds and trends in this field (related to my profile if possible)."
"Here is my profile: {profile}"
"Here are the keywords: {keywords}"
)

input = {"profile": profile, "keywords": keywords}

query = query_format.format_map(input)

query_embedding = get_bert_embedding([query])
text_chunk_l = []
title_chunk = []
data_embedding_l = []
for k in dataset.keys():
title_chunk.extend(dataset[k]["info"])
text_chunk_l.extend(dataset[k]["abstract"])
data_embedding_l.extend(data_embedding[k])

chunks_embedding_text_all = data_embedding_l
num_chunk = 10

neib_all = neiborhood_search(chunks_embedding_text_all, query_embedding, num_chunk)
neib_all = neib_all.reshape(-1)

context = []
retrieve_paper = []
for i in neib_all:
context.append(text_chunk_l[i])
retrieve_paper.append(title_chunk[i])

input["papers"] = "; ".join(context)
prompt = query_format.format_map(input)

try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
max_tokens=512,
)
except Exception:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
max_tokens=512,
)

content = completion.choices[0].message["content"]
content_l = [content]
return content_l, retrieve_paper


def generate_ideas(trend: str) -> List[str]:
prompt_qa = (
"Here is a high-level summarized trend of a research field {trend}. "
"How do you view this field? Do you have any novel ideas or insights? "
"Please give me 3 to 5 novel ideas and insights in bullet points. Each bullet point should be concise, containing 2 or 3 sentences."
)
openai.api_key = KEY
input = {"trend": trend}
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
seed=42,
top_p=1,
)
except Exception:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
seed=42,
top_p=1,
)
content = completion.choices[0].message["content"]
return [content]


def summarize_research_direction(personal_info: str) -> List[str]:
prompt_qa = (
"Based on the list of the researcher's first person persona from different times, please write a comprehensive first person persona. "
"Focus more on more recent personas. Be concise and clear (around 300 words). "
"Here are the personas from different times: {personalinfo}"
)
openai.api_key = KEY
input = {"personalinfo": personal_info}
prompt = prompt_qa.format_map(input)
try:
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
seed=42,
top_p=0,
)
except Exception:
time.sleep(20)
completion = openai.ChatCompletion.create(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
seed=42,
top_p=0,
)
content = completion.choices[0].message["content"]
return [content]
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from typing import Dict

from .agent_base import BaseResearchAgent
from .kb_base import BaseKnowledgeBase
from ..agents.agent_base import BaseResearchAgent
from ..kbs.kb_base import BaseKnowledgeBase


class BaseMultiAgentEnv(object):
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from typing import Dict, List

from .utils import get_daily_papers
from ..utils.paper_collection import get_daily_papers


class BaseKnowledgeBase(object):
Expand Down
Loading
Loading