YOLOv3 CI #2533
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Ultralytics YOLOv3 🚀, AGPL-3.0 license | |
# YOLOv3 Continuous Integration (CI) GitHub Actions tests | |
name: YOLOv3 CI | |
on: | |
push: | |
branches: [master] | |
pull_request: | |
branches: [master] | |
schedule: | |
- cron: "0 0 * * *" # runs at 00:00 UTC every day | |
workflow_dispatch: | |
jobs: | |
Tests: | |
timeout-minutes: 60 | |
runs-on: ${{ matrix.os }} | |
strategy: | |
fail-fast: false | |
matrix: | |
os: [ubuntu-latest, windows-latest] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049 | |
python-version: ["3.11"] | |
model: [yolov5n] | |
include: | |
# - os: ubuntu-latest | |
# python-version: "3.8" # '3.6.8' min (warning, this test is failing) | |
# model: yolov5n | |
- os: ubuntu-latest | |
python-version: "3.9" | |
model: yolov5n | |
- os: ubuntu-latest | |
python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8 | |
model: yolov5n | |
torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/ | |
steps: | |
- uses: actions/checkout@v4 | |
- uses: actions/setup-python@v5 | |
with: | |
python-version: ${{ matrix.python-version }} | |
cache: "pip" # caching pip dependencies | |
- name: Install requirements | |
run: | | |
python -m pip install --upgrade pip wheel | |
torch="" | |
if [ "${{ matrix.torch }}" == "1.8.0" ]; then | |
torch="torch==1.8.0 torchvision==0.9.0" | |
fi | |
pip install -r requirements.txt $torch --extra-index-url https://download.pytorch.org/whl/cpu | |
shell: bash # for Windows compatibility | |
- name: Check environment | |
run: | | |
yolo checks | |
pip list | |
- name: Test detection | |
shell: bash # for Windows compatibility | |
run: | | |
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories | |
m=${{ matrix.model }} # official weights | |
b=runs/train/exp/weights/best # best.pt checkpoint | |
python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train | |
for d in cpu; do # devices | |
for w in $m $b; do # weights | |
python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val | |
python detect.py --imgsz 64 --weights $w.pt --device $d # detect | |
done | |
done | |
python hubconf.py --model $m # hub | |
# python models/tf.py --weights $m.pt # build TF model | |
python models/yolo.py --cfg $m.yaml # build PyTorch model | |
python export.py --weights $m.pt --img 64 --include torchscript # export | |
python - <<EOF | |
import torch | |
im = torch.zeros([1, 3, 64, 64]) | |
for path in '$m', '$b': | |
model = torch.hub.load('.', 'custom', path=path, source='local') | |
print(model('data/images/bus.jpg')) | |
model(im) # warmup, build grids for trace | |
torch.jit.trace(model, [im]) | |
EOF | |
- name: Test segmentation | |
shell: bash # for Windows compatibility | |
run: | | |
m=${{ matrix.model }}-seg # official weights | |
b=runs/train-seg/exp/weights/best # best.pt checkpoint | |
python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu # train | |
python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu # train | |
for d in cpu; do # devices | |
for w in $m $b; do # weights | |
python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d # val | |
python segment/predict.py --imgsz 64 --weights $w.pt --device $d # predict | |
python export.py --weights $w.pt --img 64 --include torchscript --device $d # export | |
done | |
done | |
- name: Test classification | |
shell: bash # for Windows compatibility | |
run: | | |
m=${{ matrix.model }}-cls.pt # official weights | |
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint | |
python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1 # train | |
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160 # val | |
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png # predict | |
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict | |
python export.py --weights $b --img 64 --include torchscript # export | |
python - <<EOF | |
import torch | |
for path in '$m', '$b': | |
model = torch.hub.load('.', 'custom', path=path, source='local') | |
EOF | |
Summary: | |
runs-on: ubuntu-latest | |
needs: [Tests] | |
if: always() | |
steps: | |
- name: Check for failure and notify | |
if: (needs.Tests.result == 'failure' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov3' && (github.event_name == 'schedule' || github.event_name == 'push') | |
uses: slackapi/[email protected] | |
with: | |
webhook-type: incoming-webhook | |
webhook: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }} | |
payload: | | |
text: "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n" |