Skip to content

Commit

Permalink
Nightly (#649)
Browse files Browse the repository at this point in the history
* Update llama.py

* offload

* Update llama.py

* Update llama.py

* Update llama.py

* Update llama.py

* Update llama.py

* Update llama.py

* Update llama.py

* continued pretraining trainer

* Update trainer.py

* Update trainer.py

* Update trainer.py

* Update trainer.py

* is_bfloat16_supported

* Update __init__.py

* Update README.md

* Update llama.py

* is_bfloat16_supported

* Update __init__.py

* Mistral v3

* Phi 3 medium

* Update chat_templates.py

* Update chat_templates.py

* Phi-3

* Update save.py

* Update README.md

Mistral v3 to Mistral v0.3

* Untrained tokens

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update llama.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update save.py

* Update save.py

* Update save.py

* checkpoint

* Update _utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update tokenizer_utils.py

* Update llama.py

* accelerate

* Update _utils.py

* Update _utils.py

* Update _utils.py

* Update _utils.py

* Update _utils.py

* Update _utils.py

* Update _utils.py

* Update tokenizer_utils.py

* train_dataloader

* Update llama.py

* Update llama.py

* Update llama.py

* use_fast_convert

* Update save.py

* Update save.py

* Update save.py

* Update save.py

* remove_special_tokens

* Ollama

* Update chat_templates.py

* Update chat_templates.py

* Update chat_templates.py

* Update llama.py

* Update chat_templates.py

* Support bfloat16 GGUF

* Update save.py

* Update llama.py

* fast_forward_inference

* Update mapper.py

* Update loader.py

* Update llama.py

* Update tokenizer_utils.py

* info

* edits

* Create chat template

* Fix tokenizer

* Update tokenizer_utils.py

* fix case where gguf saving fails due to first_conversion dtype (#630)

* Support revision parameter in FastLanguageModel.from_pretrained (#629)

* support `revision` parameter

* match unsloth formatting of named parameters

* clears any selected_adapters before calling internal_model.save_pretrained (#609)

* Update __init__.py (#602)

Check for incompatible modules before importing unsloth

* Fixed unsloth/tokenizer_utils.py for chat training (#604)

* Add GGML saving option to Unsloth for easier Ollama model creation and testing. (#345)

* Add save to llama.cpp GGML to save.py.

* Fix conversion command and path of convert to GGML function.

* Add autosaving lora to the GGML function

* Create lora save function for conversion to GGML

* Test fix #2 for saving lora

* Test fix #3 to save  the lora adapters to convert to GGML

* Remove unwated tokenizer saving for conversion to ggml and added a few print statements.

* Needed tokenizer for saving, added it back, also made it more unslothy style by having positional arguments, and added a few messages.

* Positional arguments didn't work out, so reverted to older version of the code, and added a few comments.

* Test fix 1 for arch

* Test fix 2 new Mistral error.

* Test fix 3

* Revert to old version for testing.

* Upload issue test fix 1

* Fix 2 uploading ggml

* Positional ags added.

* Temporray remove positional args

* Fix upload again!!!

* Add print statements and fix link

* Make the calling name better

* Create local saving for GGML

* Add choosing directory to save local GGML.

* Fix lil variable error in the save_to_custom_dir func

* docs: Add LoraConfig parameters documentation (#619)

* llama.cpp failing (#371)

llama.cpp is failing to generate quantize versions for the trained models.

Error:

```bash
You might have to compile llama.cpp yourself, then run this again.
You do not need to close this Python program. Run the following commands in a new terminal:
You must run this in the same folder as you're saving your model.
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp && make clean && LLAMA_CUDA=1 make all -j
Once that's done, redo the quantization.
```

But when i do clone this with recursive it works.

Co-authored-by: Daniel Han <[email protected]>

* fix libcuda_dirs import for triton 3.0 (#227)

* fix libcuda_dirs import for triton 3.0

* Update __init__.py

* Update __init__.py

---------

Co-authored-by: Daniel Han <[email protected]>

* Update save.py

* Update __init__.py

* Update fast_lora.py

* Update save.py

* Update save.py

* Update save.py

* Update loader.py

* Update save.py

* Update save.py

* quantize now llama-quantize

* Update chat_templates.py

* Update loader.py

* Update mapper.py

* Update __init__.py

* embedding size

* Update qwen2.py

* docs

* Update README.md

* Update qwen2.py

* README: Fix minor typo. (#559)

* README: Fix minor typo.

One-character typo fix while reading.

* Update README.md

---------

Co-authored-by: Daniel Han <[email protected]>

* Update mistral.py

* Update qwen2.py

* Update qwen2.py

* Update qwen2.py

* Update llama.py

* Update llama.py

* Update llama.py

* Update README.md

* FastMistralModel

* Update mistral.py

* Update mistral.py

* Update mistral.py

* Update mistral.py

* Update mistral.py

* Auto check rope scaling

* Update llama.py

* Update llama.py

* Update llama.py

* GPU support

* Typo

* Update gemma.py

* gpu

* Multiple GGUF saving

* Update save.py

* Update save.py

* check PEFT and base

* Update llama.py

* Update llama.py

* Update llama.py

* Update llama.py

* Update llama.py

* Update chat_templates.py

---------

Co-authored-by: Michael Han <[email protected]>
Co-authored-by: Eliot Hall <[email protected]>
Co-authored-by: Rickard Edén <[email protected]>
Co-authored-by: XiaoYang <[email protected]>
Co-authored-by: Oseltamivir <[email protected]>
Co-authored-by: mahiatlinux <[email protected]>
Co-authored-by: Sébastien De Greef <[email protected]>
Co-authored-by: Alberto Ferrer <[email protected]>
Co-authored-by: Thomas Viehmann <[email protected]>
Co-authored-by: Walter Korman <[email protected]>
  • Loading branch information
11 people authored Jun 15, 2024
1 parent 6a5b3a4 commit 9b4802f
Show file tree
Hide file tree
Showing 3 changed files with 58 additions and 12 deletions.
1 change: 1 addition & 0 deletions unsloth/chat_templates.py
Original file line number Diff line number Diff line change
Expand Up @@ -528,6 +528,7 @@ def get_chat_template(
chat_template, stop_word = chat_template
assert(type(chat_template) is str)
assert(type(stop_word) is str)
ollama_modelfile = None

elif type(chat_template) is str:

Expand Down
33 changes: 31 additions & 2 deletions unsloth/models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -1423,9 +1423,38 @@ def get_peft_model(
transformers_set_seed(random_state)

if isinstance(model, PeftModelForCausalLM):
raise TypeError(
"Unsloth: Your model already has LoRA adapters. No need to run this again!"
# Check if exactly the same and then pass through!
assert(hasattr(model, "peft_config"))

peft_config = model.peft_config["default"].to_dict()
check_parameters = [
"r", "lora_alpha", "lora_dropout",
"bias", "layers_to_transform", "layers_pattern",
"use_rslora", "modules_to_save", "init_lora_weights",
]
check_all = True
for param in check_parameters:
check_all = check_all and (peft_config[param] == eval(param))
pass
check_all = check_all and (
len(set(peft_config["target_modules"]) ^ set(target_modules)) == 0
)
check_all = check_all and (
(loftq_config == {} or loftq_config is None) and \
(peft_config["loftq_config"] == {} or peft_config["loftq_config"] is None)
)

if check_all:
# Simply pass through!
logger.warning(
"Unsloth: Already have LoRA adapters! We shall skip this step."
)
return model
else:
raise TypeError(
"Unsloth: Your model already has LoRA adapters. Your new parameters are different."
)
pass
pass

if loftq_config is None: loftq_config = {}
Expand Down
36 changes: 26 additions & 10 deletions unsloth/models/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,21 +91,37 @@ def from_pretrained(
model_name = _get_model_name(model_name, load_in_4bit)

# First check if it's a normal model via AutoConfig
is_peft = False
try:
model_config = AutoConfig.from_pretrained(model_name, token = token, revision = revision)
is_peft = False
is_model = True
except:
is_model = False
try:
peft_config = PeftConfig .from_pretrained(model_name, token = token, revision = revision)
is_peft = True
except:
try:
# Most likely a PEFT model
peft_config = PeftConfig.from_pretrained(model_name, token = token, revision = revision)
except:
raise RuntimeError(f"Unsloth: `{model_name}` is not a full model or a PEFT model.")

is_peft = False

# Cannot be both!
if is_model and is_peft:
raise RuntimeError(
"Unsloth: You repo has a LoRA adapter and a base model.\n"\
"You have 2 files `config.json` and `adapter_config.json`.\n"\
"We must only allow one config file.\n"\
"Please separate the LoRA and base models to 2 repos."
)
elif not is_model and not is_peft:
raise RuntimeError(
f"Unsloth: `{model_name}` is not a base model or a PEFT model.\n"\
"We could not locate a `config.json` or `adapter_config.json` file"
)
pass

# Get base model for PEFT:
if is_peft:
# Check base model again for PEFT
model_name = _get_model_name(peft_config.base_model_name_or_path, load_in_4bit)
model_config = AutoConfig.from_pretrained(model_name, token = token)
is_peft = True
model_config = AutoConfig.from_pretrained(model_name, token = token, revision = revision)
pass

model_type = model_config.model_type
Expand Down

0 comments on commit 9b4802f

Please sign in to comment.