Skip to content

Commit

Permalink
Merge branch 'develop' of https://github.com/usgs/pestpp into develop
Browse files Browse the repository at this point in the history
  • Loading branch information
jdub authored and jdub committed Sep 22, 2021
2 parents 582ac83 + 83fe770 commit 4f1914d
Showing 1 changed file with 35 additions and 0 deletions.
35 changes: 35 additions & 0 deletions references.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# A Brief Compendium of Use Cases for PEST++

## Published Papers on Theory and Background
* White, Jeremy T. "A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions." Environmental Modelling & Software 109 (2018): 191-201. [https://www.sciencedirect.com/science/article/abs/pii/S1364815218302676?via%3Dihub](https://www.sciencedirect.com/science/article/abs/pii/S1364815218302676?via%3Dihub)
* White, J.T., Hunt, R.J., Fienen, M.N., and Doherty, J.E., 2020, Approaches to Highly Parameterized Inversion: PEST++ Version 5, a Software Suite for Parameter Estimation, Uncertainty Analysis, Management Optimization and Sensitivity Analysis: U.S. Geological Survey Techniques and Methods 7C26, 52 p., [https://doi.org/10.3133/tm7C26](https://doi.org/10.3133/tm7C26).
* White, J.T., Fienen, M.N., Barlow, P.M. and Welter, D.E., 2018. A tool for efficient, model-independent management optimization under uncertainty. Environmental modelling & software, 100, pp.213-221. [https://doi.org/10.1016/j.envsoft.2017.11.019](https://doi.org/10.1016/j.envsoft.2017.11.019)
* White, J.T., Fienen, M.N. and Doherty, J.E., 2016. A python framework for environmental model uncertainty analysis. Environmental Modelling & Software, 85, pp.217-228. [https://www.sciencedirect.com/science/article/pii/S1364815216305461](https://www.sciencedirect.com/science/article/pii/S1364815216305461)

## Published Papers on Applications
* White, J.T., Foster, L.K., Fienen, M.N., Knowling, M.J., Hemmings, B. and Winterle, J.R., 2020. Toward Reproducible Environmental Modeling for Decision Support: A Worked Example. Frontiers in Earth Science, 8, p.50. [https://doi.org/10.3389/feart.2020.00050](https://doi.org/10.3389/feart.2020.00050)
* Mason, J.P., Knight, J.E., Ball, L.B. Kennedy, J.R., Bills, D.J., and Macy, J.P., 2020, Groundwater availability in the Truxton basin, northwestern Arizona, chap. A of Mason, J.P., ed., Geophysical surveys, hydrogeologic characterization, and groundwater flow model for the Truxton basin and Hualapai Plateau, northwestern Arizona: U.S. Geological Survey Scientific Investigations Report 2020–5017, 14 p., [https://doi.org/10.3133/sir20205017A](https://doi.org/10.3133/sir20205017A).
* Knowling, M.J., White, J.T. and Moore, C.R., 2019. Role of model parameterization in risk-based decision support: An empirical exploration. Advances in Water Resources, 128, pp.59-73. [https://doi.org/10.1016/j.advwatres.2019.04.010](https://doi.org/10.1016/j.advwatres.2019.04.010)
* Knowling, M.J., White, J.T., Moore, C.R., Rakowski, P. and Hayley, K., 2020. On the assimilation of environmental tracer observations for model-based decision support. Hydrology and Earth System Sciences, 24(4), pp.1677-1689.[https://hess.copernicus.org/articles/24/1677/2020/](https://hess.copernicus.org/articles/24/1677/2020/)
* White, J.T., Knowling, M.J., Fienen, M.N., Feinstein, D.T., McDonald, G.W. and Moore, C.R., 2020. A non-intrusive approach for efficient stochastic emulation and optimization of model-based nitrate-loading management decision support. Environmental Modelling & Software, 126, p.104657. [https://www.sciencedirect.com/science/article/pii/S1364815219309934](https://www.sciencedirect.com/science/article/pii/S1364815219309934)
* Hemmings, B., Knowling, M.J., and Moore, C.R. 2020. Early Uncertainty Quantification for an Improved Decision Support Modeling Workflow: A Streamflow Reliability and Water Quality Example. Frontiers in Earth Science. [https://www.frontiersin.org/article/10.3389/feart.2020.565613](https://www.frontiersin.org/article/10.3389/feart.2020.565613)
* Knowling, M.J., White, J.T., McDonald, G.W., Kim, J.H., Moore, C.R., and Hemmings, B. (2020). Disentangling environmental and economic contributions to hydro-economic model output uncertainty: An example in the context of land-use change impact assessment. Environmental Modelling and Software.
* Hunt, R.J., Fienen, M.N. and White, J.T. (2020), Revisiting “An Exercise in Groundwater Model Calibration and Prediction” After 30 Years: Insights and New Directions. Groundwater, 58: 168-182. https://doi.org/10.1111/gwat.12907
* Foster, L.K., White, J.T., Leaf, A., Houston, N. and Teague, A. (2021), Risk‐based decision‐support groundwater modeling for the lower San Antonio River Basin, Texas, USA. Groundwater. Accepted Author Manuscript. https://doi.org/10.1111/gwat.13107
* Hunt, R.J., White, J.T., Duncan, L.L., Haugh, C.J. and Doherty, J. (2021), Evaluating lower computational burden approaches for calibration of large environmental models. Groundwater. Accepted Author Manuscript. https://doi.org/10.1111/gwat.13106
* White, J.T., Foster, L.K. and Fienen, M.N. (2021), Extending the Capture Map Concept to Estimate Discrete and Risk‐Based Streamflow Depletion Potential. Groundwater. https://doi.org/10.1111/gwat.13080
* White, J.T., Knowling, M.J. and Moore, C.R. (2020), Consequences of Groundwater‐Model Vertical Discretization in Risk‐Based Decision‐Making. Groundwater, 58: 695-709. https://doi.org/10.1111/gwat.12957
* White, J., Stengel, V., Rendon, S., and Banta, J.: The importance of parameterization when simulating the hydrologic response of vegetative land-cover change, Hydrol. Earth Syst. Sci., 21, 3975–3989, https://doi.org/10.5194/hess-21-3975-2017, 2017.
* Hayley, K., Valenza, A., White, E., Hutchison, B., & Schumacher, J. (2019). Application of the iterative ensemble smoother method and cloud computing: A groundwater modeling case study. Water, 11(8), 1649.
* Doble, R., Pickett, T., Janardhanan, S., Crosbie, R., & Gonzalez, D. (2020). Potential impacts on groundwater resources from conventional gas in the South East of SA.
* Moridnejad, Maryam (2015) Sensitivity analysis of a one dimensional heat transport model in the Ngongotaha Stream, New Zealand. New Zealand hydrological society conference 2015, University of Waikato
* Heywood, C. E., Kahle, S. C., Olsen, T. D., Patterson, J. D., & Burns, E. (2016). Simulation of groundwater storage changes in the eastern Pasco Basin, Washington (No. 2016-5026). US Geological Survey.
* Heywood, C. E., Lindaman, M., & Lovelace, J. K. (2019). Simulation of groundwater flow and chloride transport in the “1,500-foot” sand,“2,400-foot” sand, and “2,800-foot” sand of the Baton Rouge area, Louisiana (No. 2019-5102). US Geological Survey.
* Zhuang, C., Zhou, Z., Illman, W. A., Guo, Q., & Wang, J. (2017). Estimating hydraulic parameters of a heterogeneous aquitard using long-term multi-extensometer and groundwater level data. Hydrogeology Journal, 25(6), 1721-1732.
* White, J. T., Connor, C. B., Connor, L., & Hasenaka, T. (2017). Efficient inversion and uncertainty quantification of a tephra fallout model. Journal of Geophysical Research: Solid Earth, 122(1), 281-294.
* Wallis, I., Prommer, H., Berg, M., Siade, A. J., Sun, J., & Kipfer, R. (2020). The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 13(4), 288-295.


## Conference Proceedings
* W Kitlasten, ED Morway, RG Niswonger, M Gardner Integrated Hydrology and Operations Models to Investigate Climate Scenarios in Carson Valley, Nevada, a Snowmelt Dominated Agricultural Basin
AGU Fall Meeting Abstracts 2018, GC51J-0918 [https://agu.confex.com/agu/fm18/prelim.cgi/Paper/467820](https://agu.confex.com/agu/fm18/prelim.cgi/Paper/467820)

0 comments on commit 4f1914d

Please sign in to comment.