-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
374 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,11 @@ | ||
# atomgpt | ||
# AtomGPT: atomistic generative pre-trained transformer for forward and inverse materials design | ||
|
||
## Forward model example | ||
|
||
python atomgpt/forward_models/forward_models.py --config_name atomgpt/examples/forward_model/config.json | ||
python atomgpt/examples/inverse_model/run.py | ||
|
||
## Inverse model example | ||
|
||
python atomgpt/inverse_models/inverse_models.py --config_name atomgpt/examples/inverse_model/config.json | ||
|
||
#python atomgpt/examples/inverse_model/run.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,365 @@ | ||
from jarvis.db.jsonutils import loadjson | ||
from typing import Optional | ||
from atomgpt.inverse_models.loader import FastLanguageModel | ||
import torch | ||
from datasets import load_dataset | ||
from trl import SFTTrainer | ||
from transformers import TrainingArguments | ||
from jarvis.core.atoms import Atoms | ||
from jarvis.db.figshare import data | ||
from jarvis.db.jsonutils import loadjson, dumpjson | ||
import numpy as np | ||
from jarvis.core.atoms import Atoms | ||
from jarvis.core.lattice import Lattice | ||
from tqdm import tqdm | ||
import pprint | ||
from jarvis.io.vasp.inputs import Poscar | ||
import csv | ||
import os | ||
from pydantic_settings import BaseSettings | ||
import sys | ||
import argparse | ||
parser = argparse.ArgumentParser( | ||
description="Atomistic Generative Pre-trained Transformer." | ||
) | ||
parser.add_argument( | ||
"--config_name", | ||
default="alignn/examples/sample_data/config_example.json", | ||
help="Name of the config file", | ||
) | ||
|
||
|
||
class TrainingPropConfig(BaseSettings): | ||
"""Training config defaults and validation.""" | ||
|
||
id_prop_path: Optional[str] = "id_prop.csv" | ||
prefix: str = "atomgpt_run" | ||
model_name: str = "unsloth/mistral-7b-bnb-4bit" | ||
batch_size: int = 2 | ||
num_epochs: int = 2 | ||
seed_val: int = 42 | ||
num_train: Optional[int] = 2 | ||
num_val: Optional[int] = 2 | ||
num_test: Optional[int] = 2 | ||
model_save_path: str = "lora_model_m" | ||
|
||
|
||
# dft_3d = data("dft_3d") | ||
|
||
|
||
# d = loadjson('dft_3d_Tc_supercon.json') | ||
|
||
|
||
num_train = 2 | ||
num_val = 2 | ||
num_test = 2 | ||
run_path = "atomgpt/examples/inverse_model/" | ||
id_prop_path = "id_prop.csv" | ||
fourbit_models = [ | ||
"unsloth/mistral-7b-bnb-4bit", | ||
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit", | ||
"unsloth/llama-2-7b-bnb-4bit", | ||
"unsloth/llama-2-13b-bnb-4bit", | ||
"unsloth/codellama-34b-bnb-4bit", | ||
"unsloth/tinyllama-bnb-4bit", | ||
] # More models at https://huggingface.co/unsloth | ||
|
||
nm = "unsloth/mistral-7b-bnb-4bit" | ||
nm = fourbit_models[-2] | ||
nm = fourbit_models[0] | ||
|
||
|
||
instruction = "Below is a description of a superconductor material." | ||
model_save_path = "lora_model_m" | ||
|
||
alpaca_prompt1 = ( | ||
'"""\n' | ||
+ instruction | ||
+ '\n### Instruction:\n{}\n\n### Input:\n{}\n\n### Output:\n{}"""' | ||
) | ||
alpaca_prompt = """Below is a description of a superconductor material.. | ||
### Instruction: | ||
{} | ||
### Input: | ||
{} | ||
### Output: | ||
{}""" | ||
|
||
|
||
def get_crystal_string_t(atoms): | ||
lengths = atoms.lattice.abc # structure.lattice.parameters[:3] | ||
angles = atoms.lattice.angles | ||
atom_ids = atoms.elements | ||
frac_coords = atoms.frac_coords | ||
|
||
crystal_str = ( | ||
" ".join(["{0:.2f}".format(x) for x in lengths]) | ||
+ "\n" | ||
+ " ".join([str(int(x)) for x in angles]) | ||
+ "\n" | ||
+ "\n".join( | ||
[ | ||
str(t) + " " + " ".join(["{0:.3f}".format(x) for x in c]) | ||
for t, c in zip(atom_ids, frac_coords) | ||
] | ||
) | ||
) | ||
|
||
# crystal_str = atoms_describer(atoms) + "\n*\n" + crystal_str | ||
return crystal_str | ||
|
||
|
||
def make_alpaca_json( | ||
dataset=[], jids=[], prop="Tc_supercon", include_jid=False | ||
): | ||
mem = [] | ||
for i in dataset: | ||
if i[prop] != "na" and i["id"] in jids: | ||
atoms = Atoms.from_dict(i["atoms"]) | ||
info = {} | ||
if include_jid: | ||
info["id"] = i["id"] | ||
info["instruction"] = instruction | ||
|
||
info["input"] = ( | ||
"The chemical formula is " | ||
+ atoms.composition.reduced_formula | ||
+ ". The " | ||
+ prop | ||
+ " is " | ||
+ str(round(i[prop], 3)) | ||
+ "." | ||
+ " Generate atomic structure description with lattice lengths, angles, coordinates and atom types." | ||
) | ||
info["output"] = get_crystal_string_t(atoms) | ||
mem.append(info) | ||
return mem | ||
|
||
|
||
def formatting_prompts_func(examples): | ||
instructions = examples["instruction"] | ||
inputs = examples["input"] | ||
outputs = examples["output"] | ||
texts = [] | ||
EOS_TOKEN = '</s>' | ||
for instruction, input, output in zip(instructions, inputs, outputs): | ||
# Must add EOS_TOKEN, otherwise your generation will go on forever! | ||
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN | ||
texts.append(text) | ||
return { | ||
"text": texts, | ||
} | ||
|
||
|
||
def text2atoms(response): | ||
tmp_atoms_array = response.strip("</s>").split("\n") | ||
# tmp_atoms_array= [element for element in tmp_atoms_array if element != ''] | ||
print("tmp_atoms_array", tmp_atoms_array) | ||
lat_lengths = np.array(tmp_atoms_array[1].split(), dtype="float") | ||
lat_angles = np.array(tmp_atoms_array[2].split(), dtype="float") | ||
|
||
lat = Lattice.from_parameters( | ||
lat_lengths[0], | ||
lat_lengths[1], | ||
lat_lengths[2], | ||
lat_angles[0], | ||
lat_angles[1], | ||
lat_angles[2], | ||
) | ||
elements = [] | ||
coords = [] | ||
for ii, i in enumerate(tmp_atoms_array): | ||
if ii > 2 and ii < len(tmp_atoms_array): | ||
# if ii>2 and ii<len(tmp_atoms_array)-1: | ||
tmp = i.split() | ||
elements.append(tmp[0]) | ||
coords.append([float(tmp[1]), float(tmp[2]), float(tmp[3])]) | ||
|
||
atoms = Atoms( | ||
coords=coords, | ||
elements=elements, | ||
lattice_mat=lat.lattice(), | ||
cartesian=False, | ||
) | ||
return atoms | ||
|
||
|
||
def gen_atoms(prompt="", max_new_tokens=512,model='',tokenizer=''): | ||
inputs = tokenizer( | ||
[ | ||
alpaca_prompt.format( | ||
instruction, | ||
prompt, # input | ||
"", # output - leave this blank for generation! | ||
) | ||
], | ||
return_tensors="pt", | ||
).to("cuda") | ||
|
||
outputs = model.generate( | ||
**inputs, max_new_tokens=max_new_tokens, use_cache=True | ||
) | ||
response = tokenizer.batch_decode(outputs)[0].split("# Output:")[1] | ||
atoms = None | ||
try: | ||
atoms = text2atoms(response) | ||
except Exception as exp: | ||
|
||
print(exp) | ||
pass | ||
return atoms | ||
####################################### | ||
|
||
|
||
def run_atomgpt_inverse(config_file="config.json"): | ||
run_path = os.path.abspath(config_file).split("config.json")[0] | ||
config = loadjson(config_file) | ||
config = TrainingPropConfig(**config) | ||
pprint.pprint(config) | ||
id_prop_path = config.id_prop_path | ||
num_train=config.num_train | ||
num_test=config.num_test | ||
id_prop_path = os.path.join(run_path, id_prop_path) | ||
with open(id_prop_path, "r") as f: | ||
reader = csv.reader(f) | ||
dt = [row for row in reader] | ||
|
||
dat = [] | ||
ids = [] | ||
for i in tqdm(dt, total=len(dt)): | ||
info = {} | ||
info["id"] = i[0] | ||
ids.append(i[0]) | ||
info["prop"] = float(i[1]) # [float(j) for j in i[1:]] # float(i[1] | ||
pth = os.path.join(run_path, info["id"]) | ||
atoms = Atoms.from_poscar(pth) | ||
info["atoms"] = atoms.to_dict() | ||
dat.append(info) | ||
|
||
train_ids = ids[0:num_train] | ||
test_ids = ids[num_train:] | ||
|
||
m_train = make_alpaca_json(dataset=dat, jids=train_ids, prop="prop") | ||
dumpjson(data=m_train, filename="alpaca_prop_train.json") | ||
|
||
# m_val = make_alpaca_json(dataset=dft_3d, jids=val_ids, prop="Tc_supercon",include_jid=True) | ||
# dumpjson(data=m_val, filename="alpaca_Tc_supercon_val.json") | ||
|
||
m_test = make_alpaca_json( | ||
dataset=dat, jids=test_ids, prop="prop", include_jid=True | ||
) | ||
dumpjson(data=m_test, filename="alpaca_prop_test.json") | ||
# m_test = make_alpaca_json(dataset=dft_3d, jids=test_ids, prop="Tc_supercon",include_jid=True) | ||
# dumpjson(data=m_val, filename="alpaca_Tc_supercon_test.json") | ||
|
||
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | ||
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | ||
load_in_4bit = ( | ||
True # Use 4bit quantization to reduce memory usage. Can be False. | ||
) | ||
|
||
# 4bit pre quantized models we support for 4x faster downloading + no OOMs. | ||
model, tokenizer = FastLanguageModel.from_pretrained( | ||
model_name=nm, # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B | ||
max_seq_length=max_seq_length, | ||
dtype=dtype, | ||
load_in_4bit=load_in_4bit, | ||
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf | ||
) | ||
|
||
model = FastLanguageModel.get_peft_model( | ||
model, | ||
r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 | ||
target_modules=[ | ||
"q_proj", | ||
"k_proj", | ||
"v_proj", | ||
"o_proj", | ||
"gate_proj", | ||
"up_proj", | ||
"down_proj", | ||
], | ||
lora_alpha=16, | ||
lora_dropout=0, # Supports any, but = 0 is optimized | ||
bias="none", # Supports any, but = "none" is optimized | ||
use_gradient_checkpointing=True, | ||
random_state=3407, | ||
use_rslora=False, # We support rank stabilized LoRA | ||
loftq_config=None, # And LoftQ | ||
) | ||
|
||
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN | ||
|
||
dataset = load_dataset( | ||
"json", data_files="alpaca_prop_train.json", split="train" | ||
) | ||
dataset = dataset.map( | ||
formatting_prompts_func, | ||
batched=True, | ||
) | ||
|
||
trainer = SFTTrainer( | ||
model=model, | ||
tokenizer=tokenizer, | ||
train_dataset=dataset, | ||
dataset_text_field="text", | ||
max_seq_length=max_seq_length, | ||
dataset_num_proc=2, | ||
packing=False, # Can make training 5x faster for short sequences. | ||
args=TrainingArguments( | ||
per_device_train_batch_size=2, | ||
gradient_accumulation_steps=4, | ||
warmup_steps=5, | ||
overwrite_output_dir=True, | ||
# max_steps = 60, | ||
learning_rate=2e-4, | ||
fp16=not torch.cuda.is_bf16_supported(), | ||
bf16=torch.cuda.is_bf16_supported(), | ||
logging_steps=1, | ||
optim="adamw_8bit", | ||
weight_decay=0.01, | ||
lr_scheduler_type="linear", | ||
seed=3407, | ||
output_dir="outputs", | ||
num_train_epochs=5, | ||
report_to="none", | ||
), | ||
) | ||
|
||
trainer_stats = trainer.train() | ||
model.save_pretrained(model_save_path) | ||
|
||
model, tokenizer = FastLanguageModel.from_pretrained( | ||
model_name=model_save_path, # YOUR MODEL YOU USED FOR TRAINING | ||
max_seq_length=max_seq_length, | ||
dtype=dtype, | ||
load_in_4bit=load_in_4bit, | ||
) | ||
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | ||
|
||
f = open("AI-AtomGen-prop-dft_3d-test-rmse.csv", "w") | ||
f.write("id,target,prediction\n") | ||
|
||
for i in tqdm(m_test): | ||
prompt = i["input"] | ||
print("prompt", prompt) | ||
gen_mat = gen_atoms(prompt=i["input"],tokenizer=tokenizer,model=model) | ||
target_mat = text2atoms("\n" + i["output"]) | ||
print("target_mat", target_mat) | ||
print("genmat", gen_mat) | ||
# print(target_mat.composition.reduced_formula,gen_mat.composition.reduced_formula,target_mat.density,gen_mat.density ) | ||
# line = i['id']+","+Poscar(target_mat).to_string().replace('\n','\\n')+","+Poscar(gen_mat).to_string().replace('\n','\\n')+"\n" | ||
# f.write(line) | ||
print() | ||
f.close() | ||
|
||
if __name__ == "__main__": | ||
#output_dir = make_id_prop() | ||
#output_dir="." | ||
args = parser.parse_args(sys.argv[1:]) | ||
run_atomgpt_inverse(config_file=args.config_name) | ||
# config_file="config.json" | ||
# ) |