Skip to content

Commit

Permalink
Merge pull request #5 from usnistgov/develop
Browse files Browse the repository at this point in the history
Update README.md
  • Loading branch information
knc6 authored Aug 9, 2024
2 parents a516955 + 4c20dda commit bde0a6e
Showing 1 changed file with 21 additions and 4 deletions.
25 changes: 21 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,12 @@ pip install -q -r dev-requirements.txt
pip install -q -e .
```

As an alternate method, AtomGPT can also be installed using `pip` command as follows:
```
pip install atomgpt
```


## Forward model example (structure to property)

Forwards model are used for developing surrogate models for atomic structure to property predictions. It requires text input which can be either the raw POSCAR type files or a text description of the material. After that, we can use Google-T5/ OpenAI GPT2 etc. models with customizing langauage head for accomplishing such a task. The description of a material is generated with [ChemNLP/describer](https://github.com/usnistgov/jarvis/blob/master/jarvis/core/atoms.py#L1567) function. If you turn [`convert`](https://github.com/usnistgov/atomgpt/blob/develop/atomgpt/forward_models/forward_models.py#L277) to `False`, you can also train on bare POSCAR files.
Expand All @@ -51,22 +57,33 @@ python atomgpt/inverse_models/inverse_models.py --config_name atomgpt/examples/i
More detailed examples/case-studies would be added here soon.

# Google colab/Jupyter notebook
Examples for running AtomGPT is given in the [notebook](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/atomgpt_example.ipynb)
[![Open in Google Colab]](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/atomgpt_example.ipynb)


| Notebooks | Google Colab | Descriptions |
| ---------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [Forward/Inverse Model training](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/atomgpt_example.ipynb) | [![Open in Google Colab]](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/atomgpt_example.ipynb) | Example of installing AtomGPT, inverse model training for 5 sample materials, using the trained model for inference, relaxing structures with ALIGNN-FF, generating a database of atomic structures, train a forward prediction model. |
| [HuggingFace model inference](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/atomgpt_example_huggingface.ipynb) | [![Open in Google Colab]](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/atomgpt_example_huggingface.ipynb) | AtomGPT Structure Generation/Inference example with a model hosted on Huggingface. |


[Open in Google Colab]: https://colab.research.google.com/assets/colab-badge.svg

For other notebook example, see [here](https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks)



For similar other notebook examples, see [JARVIS-Tools-Notebook Collection](https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks)

# HuggingFace link :hugs:

https://huggingface.co/knc6


# Referenes:

1. [AtomGPT: Atomistic Generative Pretrained Transformer for Forward and Inverse Materials Design](https://pubs.acs.org/doi/full/10.1021/acs.jpclett.4c01126)
2. [ChemNLP: A Natural Language Processing based Library for Materials Chemistry Text Data](https://github.com/usnistgov/chemnlp)
3. [JARVIS-Leaderboard](https://pages.nist.gov/jarvis_leaderboard)

4. [NIST-JARVIS Infrastructure](https://jarvis.nist.gov/)

<a name="contrib"></a>
How to contribute
-----------------
Expand Down

0 comments on commit bde0a6e

Please sign in to comment.